

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by exporting the necessary data from Linnworks. Log into your Linnworks account and navigate to the data export section. Choose the specific data sets you need to transfer, such as inventory or order data. Export these data sets in a CSV format, as this is a widely-compatible format for data transfer.
Once the data is exported from Linnworks, organize and clean the CSV files. Ensure that there are no formatting issues, such as missing headers or inconsistent data types. Verify that all necessary data fields are present and properly labeled. This step is crucial to ensure smooth data import into TiDB.
If you haven't already, set up a TiDB cluster. TiDB is a distributed SQL database, and you can deploy it on-premises or in the cloud. Follow the official TiDB documentation to install and configure your cluster. Ensure that you have the necessary permissions and network configurations to allow data import.
Before importing data, create the corresponding tables in TiDB where the data from Linnworks will reside. Use the TiDB SQL interface to define the schema for each table, ensuring that data types and structures match those of your CSV files. This step is essential to ensure data integrity during the import process.
Use the TiDB `LOAD DATA` SQL command to import the CSV files into the corresponding tables. Execute the command from the TiDB SQL interface, specifying the path to each CSV file and the target table. Monitor the import process for any errors or warnings and address them as they arise. For large datasets, consider splitting the CSV files into smaller chunks to optimize performance.
After the import process, verify the integrity of the data in TiDB. Run queries to check for any discrepancies or missing data compared to the original Linnworks data. Perform spot checks on key data points to ensure accuracy. This step helps to confirm that the data transfer was successful and complete.
To streamline future data transfers, consider automating the export and import processes. Write scripts to regularly export data from Linnworks and load it into TiDB using the steps outlined above. Schedule these scripts to run at regular intervals, ensuring your TiDB database remains up-to-date with the latest data from Linnworks.
Follow these steps to transfer data from Linnworks to TiDB efficiently without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Linnworks is one of the world's leading commerce automation platforms, integrated with the world's most popular marketplaces and selling channels. Businesses can sell wherever their customers are with Linnworks, which connects, manages, and automates commerce operations. Online sales can be managed from a central platform, which allows you to list across multiple selling channels, handle large volumes of orders, and monitor business performance.
Linnworks's API provides access to a wide range of data related to e-commerce operations. The following are the categories of data that can be accessed through Linnworks's API:
1. Inventory Management: This category includes data related to inventory levels, stock movements, and product information.
2. Order Management: This category includes data related to orders, such as order details, shipping information, and payment information.
3. Shipping Management: This category includes data related to shipping, such as shipping rates, tracking information, and carrier information.
4. Customer Management: This category includes data related to customers, such as customer details, order history, and contact information.
5. Sales Management: This category includes data related to sales, such as sales reports, revenue data, and product performance data.
6. Accounting Management: This category includes data related to accounting, such as invoices, payments, and financial reports.
7. Marketing Management: This category includes data related to marketing, such as promotional campaigns, customer segmentation, and advertising data.
Overall, Linnworks's API provides access to a comprehensive set of data that can help businesses streamline their e-commerce operations and make data-driven decisions.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





