Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before initiating the migration process, thoroughly understand the schema and data structure of both the merge and starburst galaxy databases. Identify the tables, fields, data types, and relationships within your databases to ensure data is correctly mapped.
Export the data from the merge database into a standard file format like CSV, JSON, or XML. This can be done using SQL commands or the database’s built-in export tools. Ensure the exported files are complete and represent the correct data sets.
Once the data is exported, clean and transform it to match the schema requirements of the starburst galaxy database. This may involve changing data types, restructuring data, and removing duplicates or unnecessary fields to conform with the target database's structure.
Prepare the starburst galaxy database to receive the new data. This involves creating tables and fields that match the transformed data structure. Use the database's SQL interface or admin tools to set up the schemas, ensuring all necessary constraints and relationships are in place.
Use SQL commands or scripts to import the prepared data files into the starburst galaxy database. Commands like `COPY` or `INSERT INTO` can be utilized to load data directly from files into the database. Verify that the data types and values match the target schema during the load process.
After loading the data, perform thorough validation to ensure data integrity. Check for any discrepancies, such as missing or incorrect data. Compare row counts and sample data between the source and target databases to ensure a complete and accurate transfer.
Once the data transfer is complete, monitor the performance of the starburst galaxy database. Look for any performance issues that might arise due to the new data, such as slower query times or increased load. Optimize indexes, queries, and configurations as needed to ensure efficient database performance.
By following these steps, you can successfully migrate data from a merge database to a starburst galaxy database without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Merge is a puzzle game where players combine matching blocks to create new ones and clear the board. The game starts with simple blocks, but as players progress, they encounter more complex shapes and colors. The goal is to merge as many blocks as possible to earn points and advance to higher levels. The game also includes power-ups and special blocks that can help players clear the board more quickly. Merge is a fun and addictive game that challenges players to think strategically and quickly to achieve high scores.
Merge's API provides access to a wide range of healthcare data, including:
1. Patient Data: This includes demographic information, medical history, and clinical notes.
2. Imaging Data: This includes medical images such as X-rays, CT scans, and MRIs.
3. Clinical Trial Data: This includes information on clinical trials, including study design, patient enrollment, and outcomes.
4. Medical Device Data: This includes data from medical devices such as pacemakers, insulin pumps, and blood glucose monitors.
5. Electronic Health Record (EHR) Data: This includes data from EHR systems, such as medication lists, lab results, and vital signs.
6. Genomic Data: This includes genetic information, such as DNA sequencing data and gene expression data.
7. Research Data: This includes data from research studies, such as survey data and clinical trial data.
Overall, Merge's API provides access to a comprehensive set of healthcare data, enabling developers to build innovative applications and solutions that improve patient care and outcomes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





