

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data from Microsoft Teams. You can do this by using the Microsoft Teams built-in export feature. Go to the Microsoft 365 compliance center, and navigate to the Content search section. Create a new search query to locate the data you wish to export. Once the search completes, you can export the results in a downloadable format.
After the export is complete, download the data to your local machine. The data will typically be in a format such as CSV or PST, depending on what you have exported (e.g., messages, files, etc.). Ensure that you store the data securely and verify the integrity of the files to prevent any data corruption during the transfer.
If you haven't done so already, install the AWS Command Line Interface (CLI) on your local machine. This tool will allow you to interact with your AWS services directly from the command line. After installation, configure the AWS CLI with your credentials by running `aws configure` and providing your AWS Access Key, Secret Key, region, and output format.
Organize the exported data in a structured manner. If necessary, convert the files into a format that is suitable for storage in Amazon S3, such as CSV or JSON. You may need to use scripts or tools to process the data to ensure it is structured correctly.
Log in to your AWS Management Console and navigate to the S3 service. Create a new S3 bucket where you will store the Teams data. Ensure that you choose the correct region and configure the bucket settings as needed, including setting up appropriate permissions and versioning if required.
With your data ready and AWS CLI configured, use the `aws s3 cp` command to upload your files to the S3 bucket. For example, use a command like `aws s3 cp /path/to/exported/data s3://your-bucket-name/ --recursive` to upload files recursively from the specified directory to your S3 bucket.
After the upload is complete, verify that the data has been successfully transferred to your S3 bucket. You can do this by navigating to the S3 console and checking the contents of your bucket. Additionally, use the AWS CLI to list the objects in the bucket and compare checksums to ensure data integrity.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft Teams is a collaborative chat-based workspace designed to enable collaborative teamwork across the Microsoft Office apps (Excel, PowerPoint, OneNote, SharePoint, Word, etc.). Workers can shift between applications within the suite without exiting the platform. Teams can chat through private or standard channels to share insights and ideas on projects in real time. Microsoft Teams streamlines the work process and brings teams together to complete projects more productively.
Microsoft Teams API provides access to a wide range of data that can be used to enhance the functionality of the platform. The following are the categories of data that can be accessed through the API:
1. Teams and Channels: Information about the teams and channels in which the user is a member, including their names, descriptions, and membership details.
2. Messages and Conversations: Access to messages and conversations within a channel, including the content of the messages, the sender and recipient details, and the time and date of the messages.
3. Files and Documents: Access to files and documents shared within a channel, including their names, sizes, and types.
4. Meetings and Calls: Information about scheduled meetings and calls, including the time, date, and participants.
5. Users and Groups: Information about users and groups within the organization, including their names, email addresses, and roles.
6. Apps and Bots: Access to third-party apps and bots integrated with Microsoft Teams, including their names, descriptions, and functionality.
7. Settings and Configuration: Access to the settings and configuration options for Microsoft Teams, including user preferences, notification settings, and security settings.
Overall, the Microsoft Teams API provides a comprehensive set of data that can be used to build custom applications and integrations that enhance the functionality of the platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: