


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Log into your NetSuite account and navigate to the specific data you want to export. This could be a list of transactions, customer data, or inventory details. Clearly identify the fields you need, as this will help in creating a saved search or report to retrieve the data efficiently.
Go to the Reports or Saved Searches section and create a new saved search. Configure the search criteria to filter the data you need. Add the necessary columns by selecting the fields that you want to include in your JSON output. Save and run the search to ensure it captures the intended data accurately.
Once your saved search is set up, use the 'Export - CSV' functionality provided by NetSuite. This will download the search results in CSV format. Download the CSV file to your local machine for further processing.
Open the CSV file using a spreadsheet application like Microsoft Excel or a text editor. Review the data to ensure it matches your requirements. Make any necessary adjustments, such as cleaning up column headers or removing unnecessary fields, to streamline the conversion process.
Use a programming language like Python to write a script that converts CSV data to JSON format. Use libraries like `csv` and `json` in Python to read the CSV file and convert it to a JSON structure. Ensure the script handles different data types and encodings effectively.
Example Python snippet:
```python
import csv
import json
csv_file = 'data.csv'
json_file = 'data.json'
with open(csv_file, mode='r', encoding='utf-8') as file:
csv_reader = csv.DictReader(file)
data = [row for row in csv_reader]
with open(json_file, mode='w', encoding='utf-8') as file:
json.dump(data, file, indent=4)
```
Run the script you created to convert the CSV file into a JSON file. Ensure the output JSON file is correctly formatted by checking a few records manually. Look for issues like missing fields or incorrect data types that could affect data integrity.
Open the generated JSON file using a code editor or a JSON validator to verify its structure and content. Once validated, store the JSON file in your desired location for further use or integration into other systems. You can now utilize the JSON data for various applications, such as data analysis or integration into other platforms.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
NetSuite is a comprehensive cloud-based business management suite that provides an integrated platform for managing various business processes, including financials, customer relationship management (CRM), e-commerce, inventory management, and more. It offers a unified system that eliminates data silos and enables real-time visibility across an organization. NetSuite's core features include financial management, order and billing management, supply chain and warehouse management, project management, and customer support management. With its flexible and scalable architecture, NetSuite can adapt to the unique needs of businesses across different industries and sizes. By consolidating multiple business functions into a single platform, NetSuite streamlines operations, improves efficiency, and provides actionable insights for informed decision-making.
Netsuite's API provides access to a wide range of data categories, including:
1. Financial data: This includes information related to accounting, billing, payments, and financial reporting.
2. Customer data: This includes data related to customer profiles, orders, transactions, and interactions.
3. Inventory data: This includes information related to inventory levels, stock movements, and product information.
4. Sales data: This includes data related to sales orders, quotes, and opportunities.
5. Marketing data: This includes data related to campaigns, leads, and marketing automation.
6. Support data: This includes data related to customer support cases, tickets, and resolutions.
7. Employee data: This includes data related to employee profiles, time tracking, and payroll.
8. Custom data: This includes data related to custom fields, records, and workflows that are specific to a company's unique needs.
Overall, Netsuite's API provides access to a comprehensive set of data categories that can be used to support a wide range of business processes and decision-making activities.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: