

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by ensuring your Oracle database is properly configured and accessible. Verify that you have the necessary credentials and permissions to connect and query the data you intend to transfer. If needed, install Oracle client libraries on the machine from which you will execute scripts.
Download and install the Oracle Instant Client on your local machine or server where you will run the scripts. This client provides the tools necessary to connect to the Oracle database. Ensure that the `ORACLE_HOME` and `LD_LIBRARY_PATH` environment variables are set to point to your Oracle client installation.
Download and install the Google Cloud SDK, which includes the `gcloud` command-line tool. This tool will allow you to authenticate and interact with Google Cloud resources, including Pub/Sub. After installation, authenticate your account using the command `gcloud auth login` and set your project using `gcloud config set project [PROJECT_ID]`.
Use the Google Cloud Console or the `gcloud` command-line tool to create a new Pub/Sub topic where your data will be published. For example, you can create a topic using `gcloud pubsub topics create [TOPIC_NAME]`.
Write a script in a language like Python or Java that connects to the Oracle database using a native library (such as cx_Oracle for Python). The script should execute the necessary SQL queries to retrieve the data you wish to transfer. Ensure that the script handles data extraction efficiently, possibly using batching for large datasets.
Extend your script to include functionality for publishing the extracted data to Google Pub/Sub. Use the Google Cloud client library for the chosen language to connect to Pub/Sub and publish messages. Ensure that each data entry is formatted as a message and sent to the topic created in Step 4. Handle any potential exceptions or errors in publishing.
To regularly move data, set up a cron job or a scheduled task that runs your script at defined intervals. Implement logging within your script to track execution and potential issues. Consider adding error handling mechanisms to ensure reliability, such as retry logic for failed message publications.
By following these steps, you can set up a data transfer pipeline from Oracle to Google Pub/Sub without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Oracle DB is a fully scalable integrated cloud application and platform service; it is also referred to as a relational database architecture. It provides management and processing of data for both local and wide and networks. Offering software-as-a-service (SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service (IaaS), it sells a large variety of enterprise IT solutions that help companies streamline the business process, lower costs, and increase productivity.
Oracle DB provides access to a wide range of data types, including:
• Relational data: This includes tables, views, and indexes that are used to store and organize data in a structured manner.
• Spatial data: This includes data that is related to geographic locations, such as maps, satellite imagery, and GPS coordinates.
• Time-series data: This includes data that is related to time, such as stock prices, weather data, and sensor readings.
• Multimedia data: This includes data that is related to images, videos, and audio files.
• XML data: This includes data that is stored in XML format, such as web pages, documents, and other structured data.
• JSON data: This includes data that is stored in JSON format, such as web APIs, mobile apps, and other data sources.
• Graph data: This includes data that is related to relationships between entities, such as social networks, supply chains, and other complex systems.
Overall, Oracle DB's API provides access to a wide range of data types that can be used for a variety of applications, from business intelligence and analytics to machine learning and artificial intelligence.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: