

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, you need to identify the data you want to extract from Orbit Love. If Orbit Love provides an API, you can use it to programmatically extract data. Make HTTP GET requests to the relevant endpoints to fetch the data. Alternatively, if manual export options are available, download the data as CSV or JSON files.
Once you have the data, ensure it is in a structured format that can be easily manipulated and imported into the Oracle Database. If the data was exported in CSV or JSON format, review the structure for consistency and completeness. Clean the data by removing duplicates and correcting any inconsistencies.
Before importing data, you need to set up a schema in your Oracle Database that reflects the structure of the data from Orbit Love. Use SQL commands to create tables and define columns with appropriate data types that match the data you extracted.
With the schema defined, transform your data to match the structure of the Oracle Database. You can write scripts in Python, Java, or another programming language to parse the data files and reformat them according to the schema. This step ensures data integrity and compatibility.
Use Oracle's SQL*Loader utility to import data from your prepared files into the Oracle Database. Create a control file that specifies how data should be loaded, mapping fields from the data file to the database table columns. Run SQL*Loader from the command line to perform the data import.
After loading the data, run SQL queries to verify that the data in your Oracle Database matches the original data from Orbit Love. Check for discrepancies, such as missing records or incorrect values, and resolve any issues by reloading or manually correcting the data.
To streamline future data transfers, automate the extraction, transformation, and loading processes. Write scripts that can be scheduled with cron jobs or task schedulers to periodically extract new data from Orbit Love, transform it, and load it into the Oracle Database, ensuring that the database is always up-to-date.
By following these steps, you can efficiently move data from Orbit Love to an Oracle Database without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Orbit is the leading community growth platform. Orbit is made by community builders, who understand the power of community. They want to help you deliver a stellar member experience, quantify your business impact, and become community-driven.
Orbit.love's API provides access to a variety of data related to social media and influencer marketing. The following are the categories of data that can be accessed through the API:
1. Social media data: This includes data related to social media platforms such as Instagram, Twitter, and YouTube. It includes information such as follower count, engagement rate, and post frequency.
2. Influencer data: This includes data related to influencers such as their name, handle, and bio. It also includes information about their audience demographics and interests.
3. Campaign data: This includes data related to influencer marketing campaigns such as campaign goals, budget, and performance metrics.
4. Brand data: This includes data related to brands such as their name, industry, and target audience. It also includes information about their marketing goals and strategies.
5. Performance data: This includes data related to the performance of influencer marketing campaigns such as engagement rate, reach, and conversion rate.
Overall, Orbit.love's API provides a comprehensive set of data that can be used to analyze and optimize influencer marketing campaigns.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: