Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start snycing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
Parquet File is a columnar storage file format that is designed to store and process large amounts of data efficiently. It is an open-source project that was developed by Cloudera and Twitter. Parquet File is optimized for use with Hadoop and other big data processing frameworks, and it is designed to work well with both structured and unstructured data. The format is highly compressed, which makes it ideal for storing and processing large datasets. Parquet File is also designed to be highly scalable, which means that it can be used to store and process data across multiple nodes in a distributed computing environment.
CSV (Comma Separated Values) file is a tool used to store and exchange data in a simple and structured format. It is a plain text file that contains data separated by commas, where each line represents a record and each field is separated by a comma. CSV files are widely used in data analysis, data migration, and data exchange between different software applications. The CSV file format is easy to read and write, making it a popular choice for storing and exchanging data. It can be opened and edited using any text editor or spreadsheet software, such as Microsoft Excel or Google Sheets. CSV files can also be imported and exported from databases, making it a convenient tool for data management. CSV files are commonly used for storing large amounts of data, such as customer information, product catalogs, financial data, and scientific data. They are also used for data analysis and visualization, as they can be easily imported into statistical software and other data analysis tools. Overall, the CSV file is a simple and versatile tool that is widely used for storing, exchanging, and analyzing data.
1. Open the Airbyte dashboard and click on "Sources" on the left-hand side of the screen.
2. Click on the "Create Connection" button and select "Parquet File" from the list of available connectors.
3. Enter a name for your connection and click on "Next".
4. In the "Configuration" tab, enter the path to your Parquet file in the "File Path" field.
5. If your Parquet file is password-protected, enter the password in the "Password" field.
6. If your Parquet file is encrypted, select the appropriate encryption type from the "Encryption Type" dropdown menu and enter the encryption key in the "Encryption Key" field.
7. Click on "Test Connection" to ensure that your credentials are correct and that Airbyte can connect to your Parquet file.
8. If the test is successful, click on "Create" to save your connection.
9. You can now use this connection to create a new Airbyte pipeline and start syncing data from your Parquet file to your destination.
1. Open the Airbyte platform and navigate to the "Destinations" tab on the left-hand side of the screen.
2. Click on the "CSV File" destination connector.
3. Click on the "Create new connection" button.
4. Enter a name for your connection and select the workspace you want to use.
5. Enter the path where you want to save your CSV file.
6. Choose the delimiter you want to use for your CSV file.
7. Select the encoding you want to use for your CSV file.
8. Choose whether you want to append data to an existing file or create a new file each time the connector runs.
9. Enter any additional configuration settings you want to use for your CSV file.
10. Click on the "Test" button to ensure that your connection is working properly.
11. If the test is successful, click on the "Create" button to save your connection.
12. Your CSV File destination connector is now connected and ready to use.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Parquet File's API gives access to various types of data, including:
• Structured data: Parquet files can store structured data in a columnar format, making it easy to query and analyze large datasets.
• Semi-structured data: Parquet files can also store semi-structured data, such as JSON or XML, allowing for more flexibility in data storage.
• Unstructured data: Parquet files can store unstructured data, such as text or binary data, making it possible to store a wide range of data types in a single file.
• Big data: Parquet files are designed for big data applications, allowing for efficient storage and processing of large datasets.
• Machine learning data: Parquet files are commonly used in machine learning applications, as they can store large amounts of data in a format that is optimized for processing by machine learning algorithms.
Overall, Parquet File's API provides access to a wide range of data types, making it a versatile tool for data storage and analysis in a variety of applications.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: