

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing PayPal's REST API to retrieve transaction data. You will need to create a PayPal developer account and generate API credentials (Client ID and Secret) to authenticate your requests. Familiarize yourself with PayPal's API documentation to understand how to query transaction data.
Use your generated Client ID and Secret to request an OAuth 2.0 token from PayPal. This token is required to authenticate your API requests. Send a POST request to PayPal's token endpoint with your credentials to receive the access token, which you will include in the headers of your subsequent API requests.
With the access token, make a GET request to the appropriate PayPal API endpoint to fetch the transaction data. Specify the required parameters, such as date range and transaction type, to narrow down the data you need. PayPal's API will return the transaction data in JSON format, which you can then process.
Parse the JSON data retrieved from the PayPal API. Use a programming language like Python to convert the JSON data into a structured format, such as a CSV or a DataFrame, which can be easily handled within Databricks. This step involves extracting relevant fields and organizing the data for storage.
Log in to your Databricks account and set up a new notebook or cluster. Ensure your environment is configured to handle data operations, with access to necessary libraries such as PySpark or Pandas for data manipulation.
Use Databricks' built-in capabilities to upload your transformed data. If you have converted the transaction data into a CSV file, you can use Databricks' file upload feature to load the CSV into the Databricks File System (DBFS). Alternatively, use a programmatic approach to write your DataFrame directly to a Delta Lake table.
Once the data is in Databricks, create a Delta Lake table to store the transaction data. Delta Lake provides ACID transactions, scalable metadata handling, and is optimized for big data processing. Use Spark SQL or DataFrame APIs to define the schema and load your data into a Delta table for further analysis and processing.
This guide provides a direct, practical approach to moving data from PayPal transactions to a Databricks Lakehouse, ensuring that you have full control over each step of the process without relying on external connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
A technology-based financial service company, PayPal facilitates online payments between customers and merchants worldwide. The PayPal platform offers secure, affordable, and convenient online financial services, making e-commerce transactions easy and secure for millions of consumers and merchants globally. Customers can link their credit or debit card or their bank account to their PayPal account to make online purchasing simpler and safer.
PayPal Transaction's API provides access to a wide range of data related to transactions processed through the PayPal platform. The following are the categories of data that can be accessed through the API:
1. Transaction details: This includes information about the transaction amount, currency, date, and time.
2. Buyer and seller information: This includes details about the buyer and seller, such as their names, email addresses, and PayPal account IDs.
3. Payment status: This includes information about the status of the payment, such as whether it has been completed, pending, or refunded.
4. Payment method: This includes information about the payment method used, such as credit card, PayPal balance, or bank transfer.
5. Shipping information: This includes details about the shipping address and shipping method used for the transaction.
6. Tax and fee information: This includes details about any taxes or fees associated with the transaction.
7. Refund and dispute information: This includes information about any refunds or disputes related to the transaction.
8. Custom fields: This includes any custom fields that were included in the transaction, such as order numbers or product descriptions.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: