

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from Plausible. Plausible provides an option to export data as CSV files. Log into your Plausible account, navigate to the specific report or dataset you wish to export, and select the option to download it as a CSV file. Save this file to a local or accessible directory on your computer.
Ensure you have a Google Cloud account and access to Google BigQuery. If you haven't already, create a new project or use an existing one. Enable the BigQuery API for your project via the Google Cloud Console. This will allow you to interact with BigQuery and upload your data.
Before importing data into BigQuery, upload your CSV file to Google Cloud Storage. In the Google Cloud Console, create a new GCS bucket or use an existing one. Upload your CSV file to this bucket. This step is crucial because BigQuery can directly import data from Cloud Storage.
In the BigQuery section of the Google Cloud Console, create a new dataset to store your data. Once your dataset is ready, define a table schema that matches the structure of your CSV file. You can do this manually by specifying each column name and data type according to your CSV file.
With your dataset and table ready, use a BigQuery SQL query or the BigQuery Data Transfer Service to load data from your GCS bucket into the BigQuery table. In the BigQuery editor, execute a `LOAD DATA` SQL statement, specifying your GCS file path and the target table. Ensure you handle any data type conversions if necessary.
Once the data load is complete, verify that the data has been accurately transferred. Run a few queries in BigQuery to check the data against your original CSV file. Compare row counts, column values, and data types to ensure everything matches and no information is lost during the transfer.
For ongoing data syncing, consider setting up a script using Google Cloud's SDK or client libraries to automate the download from Plausible, upload to GCS, and data load into BigQuery. You can use a combination of shell scripts and cron jobs (or Google Cloud Functions) to automate and schedule these tasks periodically as needed.
This guide outlines the manual process and basic automation for transferring data from Plausible to BigQuery without relying on third-party integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Appreciable Analytics is an open-source project dedicated to making web analytics more privacy-friendly. Our goal is to reduce corporate surveillance by providing an alternative web analytics tool that doesn't come from the AdTech world. Trusted by thousands of paying customers. We are completely independent, self-funded, and bootstrapped. The legal entity is incorporated in Estonia, while our team works remotely and flexibly.
Plausible's API provides access to a variety of data related to website traffic and user behavior. The following are the categories of data that can be accessed through Plausible's API:
1. Site Metrics: This category includes data related to the overall performance of a website, such as the number of page views, unique visitors, bounce rate, and average session duration.
2. Traffic Sources: This category includes data related to the sources of traffic to a website, such as search engines, social media, direct traffic, and referral traffic.
3. User Behavior: This category includes data related to user behavior on a website, such as the pages visited, time spent on each page, and the actions taken on the website.
4. Geolocation: This category includes data related to the geographic location of website visitors, such as the country, region, and city.
5. Devices: This category includes data related to the devices used by website visitors, such as desktop, mobile, and tablet.
6. Browsers: This category includes data related to the browsers used by website visitors, such as Chrome, Firefox, Safari, and Internet Explorer.
Overall, Plausible's API provides a comprehensive set of data that can be used to analyze website traffic and user behavior, and to make data-driven decisions to improve website performance.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: