

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin the process, you will need to export your data from Pocket. Log into your Pocket account on the web and navigate to the 'Options' or 'Settings' section. Look for the 'Export' feature which allows you to download your saved items, typically in an HTML file format. Download this file to your computer.
Open the downloaded HTML file in a web browser or text editor to examine its structure. You will need to manually extract the data, such as titles, URLs, and tags. Copy this information into a spreadsheet tool like Microsoft Excel or Google Sheets, arranging it into a structured format (e.g., columns for Title, URL, Tags). Save or export this spreadsheet data as a CSV file.
Open Google Sheets and create a new spreadsheet. This will be the destination for your Pocket data. Make sure to label your columns in the first row to match the data you extracted, such as Title, URL, and Tags.
In your newly created Google Sheet, click on 'File' > 'Import'. Choose the CSV file you just created and select the appropriate import options. Typically, you will want to replace the current sheet and have the imported data start at the first row to align with your header labels.
Once the data is imported, take a moment to review it for any inconsistencies or errors. Address any formatting issues and ensure that all data is correctly aligned with the appropriate columns. This is a good opportunity to remove any duplicates or unwanted entries.
Depending on your needs, you might want to add formulas or functions to your sheet. For example, you could use Google Sheets functions to sort the data, filter specific tags, or calculate the number of items saved. This step enhances the usability of your data within Google Sheets.
If you plan to update this data regularly, establish a routine for exporting from Pocket and importing into Google Sheets. Document this process for efficiency. While this method is manual, consistency will make future updates quicker and more straightforward.
By following these steps, you can effectively manage and analyze your Pocket data in Google Sheets without relying on third-party tools.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Pocket, the premier Save for Later app, lets you consume and share content whenever you want, wherever you want, even without an internet connection. When you come across an article, video or a webpage you'd like to readbut can't at that time, save it to Pocket. You can then read or watch it whenever you have a moment, whether it's on the couch, during your commute, on the plane, train, or practically anywhere.
Pocket's API provides access to various types of data related to the user's Pocket account. The categories of data that can be accessed through the API are:
1. Articles: This includes the full text of articles saved by the user, along with metadata such as title, author, and URL.
2. Tags: The API allows access to the tags associated with each article, which can be used to organize and filter saved articles.
3. Favorites: The API provides access to the user's favorite articles, which can be used to highlight important or frequently referenced content.
4. Reads: The API tracks the user's reading history, including the date and time each article was read.
5. Recommendations: Pocket's API can provide personalized article recommendations based on the user's reading history and preferences.
6. Stats: The API provides access to various statistics related to the user's Pocket account, such as the number of articles saved, read, and favorited.
7. Authentication: The API allows developers to authenticate users and access their Pocket data securely.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: