

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from PostHog. Navigate to your PostHog dashboard, and use the available export options to download the data as a CSV file. This is typically done through the "Export" feature within the UI, where you can specify the type of events and the date range you wish to export.
Ensure you have a Google Cloud project set up. If not, create a new project in the Google Cloud Console. Make sure billing is enabled, as BigQuery services require billing to be active. Also, ensure you have the necessary permissions to create datasets and tables within BigQuery.
In the Google Cloud Console, navigate to the BigQuery section. Create a new dataset that will contain the tables for your PostHog data. A dataset serves as a container for your tables and helps organize your data.
Before loading data, define the schema for the table that will store your PostHog data. The schema should correspond to the structure of your exported CSV file, including field names and data types. You can do this in the BigQuery web UI by selecting the dataset you created, then clicking "Create Table," and specifying the schema details manually.
Upload the exported CSV file to a Google Cloud Storage (GCS) bucket. This can be done through the Google Cloud Console's Storage section. Create a new bucket if necessary, and upload the CSV file using the "Upload Files" option. The CSV file in GCS will be used as the source file for loading data into BigQuery.
With the CSV file in GCS, navigate back to the BigQuery section of the Google Cloud Console. Select your dataset and click "Create Table." Choose "Google Cloud Storage" as the source, and specify the path to your CSV file in the GCS bucket. Ensure you select the correct schema you defined earlier, configure any additional options like data format, and load the data into the table.
After loading the data, verify the integrity and correctness of the data in BigQuery. Run basic SQL queries to check row counts, data types, and spot-check some of the entries to ensure they match those originally exported from PostHog. This step ensures that the data transfer was successful and that no discrepancies exist between the source and destination.
By following these steps, you can successfully move data from PostHog to BigQuery without utilizing third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
PostHog is an open-source Product Analytics software-as-a-service (Saas) for developers, aimed at helping software teams better understand user behavior. Offering a private cloud option to alleviate GDPR concerns, it provides the features engineers need most: it helps them automate events, understand their product usage and user data collections, tracks which features are being triggered for product events, etc.
Posthog's API gives access to a wide range of data related to user behavior and interactions with a website or application. The following are the categories of data that can be accessed through Posthog's API:
1. Events: This includes data related to user actions such as clicks, page views, and form submissions.
2. Users: This includes data related to user profiles such as email addresses, names, and user IDs.
3. Sessions: This includes data related to user sessions such as session IDs, start and end times, and session duration.
4. Funnels: This includes data related to user journeys through a website or application such as the steps they take to complete a specific task.
5. Retention: This includes data related to user retention such as the percentage of users who return to a website or application after a certain period of time.
6. Cohorts: This includes data related to user groups such as users who signed up during a specific time period or users who completed a specific action.
7. Trends: This includes data related to changes in user behavior over time such as changes in the number of page views or clicks.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: