

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing your Postmark account and extracting the data you need. Postmark provides API endpoints that allow you to pull data programmatically. Use these endpoints to query and retrieve the necessary data, such as emails, statistics, or event data, in JSON format. You could use a scripting language like Python to automate this process.
Once the data is extracted, transform it into a format compatible with Apache Iceberg. Iceberg commonly uses formats like Parquet or Avro. Use a data processing library, such as Pandas in Python, to convert the JSON data into these formats. Ensure that the data schema aligns with the schema you plan to use in Iceberg.
Prepare your Apache Iceberg environment for data import. This involves setting up a compatible compute engine like Apache Spark or Apache Flink. Install the necessary Iceberg libraries and ensure your compute engine is configured to interact with Iceberg tables.
Define the schema for your Iceberg table that will store the Postmark data. This includes specifying column names, data types, and any partitioning strategies you wish to use. Use your compute engine’s SQL interface or API to create the table with the defined schema in your data lake.
Use your compute engine to write the transformed data into the Iceberg table. If you're using Spark, for instance, you can load the Parquet or Avro files into a DataFrame and then write the DataFrame to the Iceberg table using the `write` method. Make sure to match the DataFrame schema with the Iceberg table schema.
After loading the data, perform checks to ensure that the data has been accurately migrated. Query the Iceberg table to verify that the row counts and data values match the original data from Postmark. Check for any discrepancies or data corruption during the transfer process.
Implement a scheduling mechanism to automate regular data transfers from Postmark to Apache Iceberg. This could involve setting up a cron job or using a task scheduler in your computing environment to periodically run the data extraction and loading scripts. This ensures that the Iceberg table remains up-to-date with the latest data from Postmark.
By following these steps, you can effectively move data from a Postmark app to Apache Iceberg without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Postmark is a fast and reliable email delivery service. Postmark is a platform that assists coaches to run their businesses, remaining built-in email functionality to confirm appointments, send call reminders, and more. Postmark is a simple email delivery service used by thousands of customers to send transactional emails and marketing emails. Postmark is a powerful provider of application email delivery solutions. Postmark also provides email API, simple mail transfer protocol, email templates, analytics, message streams, and other services.
Postmark App's API provides access to various types of data related to email delivery and management. The following are the categories of data that can be accessed through the API:
1. Email delivery data: This includes information about the delivery status of emails, such as whether they were successfully delivered, bounced, or marked as spam.
2. Email content data: This includes the content of emails, such as the subject line, body text, and attachments.
3. Email recipient data: This includes information about the recipients of emails, such as their email addresses, names, and any custom metadata associated with them.
4. Email tracking data: This includes information about how recipients interact with emails, such as whether they opened them, clicked on links, or unsubscribed.
5. Account data: This includes information about the Postmark App account, such as the account ID, API key, and usage statistics.
Overall, the Postmark App's API provides a comprehensive set of data that can be used to monitor and manage email delivery and engagement.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: