Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, obtain access to the RKI COVID data, which is typically available in CSV format. You can download the data directly from the RKI website or any public repository where it is hosted. Ensure that you have the latest data file available for processing.
Set up a working environment on your local machine or server where you can process data files. Ensure that you have appropriate access permissions and tools installed, such as Python or any other scripting language, for data manipulation. Also, make sure you have Oracle client utilities installed to interact with your Oracle Database.
Log into your Oracle Database using SQL*Plus or SQL Developer. Create a table that matches the schema of your RKI COVID data. Define columns with appropriate data types to accommodate the data you plan to import. For example:
```sql
CREATE TABLE rki_covid_data (
id NUMBER PRIMARY KEY,
report_date DATE,
cases NUMBER,
deaths NUMBER,
recovered NUMBER
);
```
Write a script (e.g., using Python) to read the CSV file and transform each row into an SQL `INSERT` statement. Use Python's CSV module to parse the file and format data appropriately for Oracle SQL. Ensure that date formats and numeric conversions align with Oracle's data types.
Collect all the SQL `INSERT` statements generated in the previous step into a single SQL script file. Ensure that the script includes all necessary statements to insert the data into your Oracle table. Review the script for any syntax errors or data inconsistencies.
Use Oracle's SQL*Plus tool to execute your SQL script. Connect to your Oracle Database using a command like:
```bash
sqlplus username/password@database
```
Run the script by using:
```bash
@path_to_your_script.sql
```
Monitor the execution for any errors, and ensure that all data is inserted as expected.
After the data insertion, perform a verification step to ensure that the data in your Oracle Database matches the RKI COVID data source. Execute SQL queries to count records, check for duplicates, and validate data integrity. This step ensures that the data migration was successful and accurate.
By following these steps, you can efficiently move data from the RKI COVID dataset to an Oracle Database without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
RKI stands for the Robert Koch Institute is continuously monitoring the situation, evaluating all available information, estimating the risk for the population in Germany. RKI Corvid provides selected information on COVID-19 available in English. In the connector source RKI Corvid we want to add streams for the states that include history data , incidence rate , cases , deaths and so on.
The RKI Covid's API provides access to a wide range of data related to the Covid-19 pandemic in Germany. The data can be categorized into the following categories:
1. Case data: This includes information on the number of confirmed cases, deaths, and recoveries in Germany.
2. Testing data: This includes information on the number of tests conducted, the positivity rate, and the number of tests per capita.
3. Hospitalization data: This includes information on the number of hospitalizations, ICU admissions, and ventilator use.
4. Vaccination data: This includes information on the number of people vaccinated, the number of doses administered, and the percentage of the population vaccinated.
5. Geographic data: This includes information on the number of cases and deaths by state, district, and municipality.
6. Demographic data: This includes information on the age, gender, and ethnicity of Covid-19 patients.
7. Time series data: This includes information on the daily and cumulative number of cases, deaths, and vaccinations over time.
Overall, the RKI Covid's API provides a comprehensive set of data that can be used to track the spread of Covid-19 in Germany and inform public health policies and interventions.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: