


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by logging into your SAP Fieldglass account using your valid credentials. Ensure you have the necessary permissions to access and export the data you need. Navigate to the section where your data resides, such as reports or specific modules.
Utilize the built-in export functionality within SAP Fieldglass to extract the data. You can typically export data in formats such as CSV or Excel. Choose the data set you wish to export, and make sure to select all the relevant fields and filters before exporting. Save the file to your local machine.
Once you�ve saved the file, open it in a spreadsheet application such as Microsoft Excel or Google Sheets. Review the data to ensure it contains all the necessary information and is structured correctly.
Clean and structure the data in the spreadsheet application. Ensure that each row represents a unique record and columns represent data fields. Remove any unnecessary rows, columns, or formatting that could interfere with JSON conversion.
Use a script or tool to convert the cleaned data into JSON format. You can write a simple Python script using libraries such as `pandas` to read the data and `json` to convert it. Here�s a basic example:
```python
import pandas as pd
import json
# Load data from CSV
df = pd.read_csv('exported_data.csv')
# Convert DataFrame to JSON
json_data = df.to_json(orient='records')
# Save JSON to file
with open('data.json', 'w') as json_file:
json_file.write(json_data)
```
Ensure your script correctly maps all fields from the CSV to key-value pairs in JSON.
After conversion, open the JSON file in a text editor or JSON viewer to verify the structure and integrity of the data. Check for any missing values or discrepancies that may have occurred during the conversion process.
Once verified, store your JSON file securely on your local machine. Consider organizing it within a directory structure if you'll be handling multiple JSON files. Implement any necessary security measures, such as encryption or access control, to protect sensitive data.
By following these steps, you can effectively transfer data from SAP Fieldglass to a local JSON file without relying on third-party connectors.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
SAP Fieldglass is a cloud-based product designed to help companies manage their contingent workforces and project-based labor, and it is a cloud-based, open Vendor Management System that assists organizations to find, engage, manage, and pay external workers anywhere. SAP Fieldglass is a software company that provides a cloud-based Vendor Management System to manage services procurement and external workforce management. SAP Fieldglass is also a cloud-based software platform that permits companies to manage external workforces, including contractors, and temporary workers.
SAP Fieldglass's API provides access to a wide range of data related to workforce management and procurement. The following are the categories of data that can be accessed through the API:
1. Worker data: This includes information about workers such as their personal details, employment status, job title, and work location.
2. Time and expense data: This includes data related to the time and expenses incurred by workers, such as hours worked, overtime, and travel expenses.
3. Procurement data: This includes data related to procurement activities such as purchase orders, invoices, and payments.
4. Vendor data: This includes information about vendors such as their contact details, performance metrics, and compliance status.
5. Compliance data: This includes data related to compliance with regulations and policies, such as background checks, drug tests, and certifications.
6. Analytics data: This includes data related to workforce and procurement analytics, such as spend analysis, vendor performance, and worker utilization.
Overall, SAP Fieldglass's API provides access to a comprehensive set of data that can be used to optimize workforce management and procurement processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: