How to load data from Sendinblue to Typesense

Learn how to use Airbyte to synchronize your Sendinblue data into Typesense within minutes.

Summarize this article with:

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Sendinblue connector in Airbyte

Connect to Sendinblue or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Typesense for your extracted Sendinblue data

Select Typesense where you want to import data from your Sendinblue source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Sendinblue to Typesense in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner

Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot

Chase Zieman

Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more

Rupak Patel

Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync Sendinblue to Typesense Manually

Begin by logging into your Sendinblue account. Navigate to the Contacts section and select the list or segment you want to export. Use the export function provided by Sendinblue to download the data, typically in CSV format. Ensure you have the necessary permissions to access and export this data.

Open the exported CSV file using a spreadsheet application like Microsoft Excel or Google Sheets. Review the data to ensure it is clean and well-structured. Remove any unnecessary columns, correct any formatting issues, and ensure that the data is ready for import into Typesense. Save the cleaned data as a CSV file.

Install Typesense on your local machine. You can do this by following the instructions on the [Typesense GitHub repository](https://github.com/typesense/typesense). Ensure that you have the necessary dependencies like Ruby, Node.js, and Docker (if using Docker) installed on your system, depending on your preferred installation method.

With Typesense running locally, create a new collection to hold your Sendinblue data. Use the Typesense API to define the schema for this collection, specifying the fields that correspond to the columns in your CSV file. For example, if your CSV contains columns for "email" and "name," define these fields in the collection schema.

Write a simple script in a programming language like Python or JavaScript to convert your CSV data into JSON format. This is necessary because Typesense accepts data in JSON format. Ensure each record from the CSV is accurately transformed into a JSON object that matches the schema of your Typesense collection.

Use the Typesense API to import your JSON data into the newly created collection. This can be done through a script that reads the JSON file and sends POST requests to the Typesense server, or manually using a tool like `curl` to send the data directly. Verify that all data points have been correctly imported.

Once the data import is complete, perform a series of checks to ensure data integrity and accuracy. Use the Typesense search functionality to query the collection and verify that the data reflects what was originally in Sendinblue. Check for missing records or discrepancies, and re-import data if necessary.

By following these steps, you can successfully move your data from Sendinblue to Typesense without relying on third-party connectors or integrations.

How to Sync Sendinblue to Typesense Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

The smartest and most intuitive platform is Sendinblue for growing businesses. Sendinblue is a comparatively easy tool to learn. Sendinblue only supports full refresh syncs meaning that each time you use the connector it will sync all available records from scratch. Sendinblue is a marketing tool that stands out from its competitors and this is also an email marketing solution for small and medium-sized businesses that want to send and automate email marketing campaigns.

Sendinblue's API provides access to a wide range of data related to email marketing and automation. The following are the categories of data that can be accessed through Sendinblue's API: 1. Contacts: This includes data related to the contacts in your Sendinblue account, such as their email addresses, names, and other contact information. 2. Campaigns: This includes data related to the email campaigns you have created in Sendinblue, such as the subject line, content, and delivery statistics. 3. Automation: This includes data related to the automated workflows you have set up in Sendinblue, such as the triggers, actions, and performance metrics. 4. Transactional emails: This includes data related to the transactional emails you have sent through Sendinblue, such as the recipient, content, and delivery status. 5. Reports: This includes data related to the performance of your email marketing efforts, such as open rates, click-through rates, and conversion rates. 6. Lists: This includes data related to the lists you have created in Sendinblue, such as the number of contacts in each list and their segmentation criteria. Overall, Sendinblue's API provides access to a comprehensive set of data that can help businesses optimize their email marketing and automation strategies.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up Sendinblue to Typesense as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from Sendinblue to Typesense and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter