

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by accessing Sentry data through its REST API. Sentry provides endpoints to fetch different types of data like events, projects, and issues. You'll need to authenticate using an API token. Begin by reviewing Sentry's API documentation to understand the endpoints you will need for the specific data you wish to move.
Develop a script using a programming language like Python to interact with the Sentry API. This script should authenticate using your API token and make HTTP GET requests to the relevant endpoints. Use libraries like `requests` in Python to simplify HTTP requests. Ensure you handle pagination if you're retrieving a large dataset.
Once you have fetched the data, transform it into a format suitable for S3. Common formats include JSON, CSV, or Parquet. This transformation can be done within your script. For instance, if you're working with JSON data, ensure it is properly formatted and written to a local file ready for upload.
Install and configure the AWS Command Line Interface (CLI) on your system if it isn't already set up. Use `aws configure` to input your AWS Access Key, Secret Key, region, and output format. The AWS CLI will allow you to interact with S3 directly from your command line or within your script.
Log into your AWS Management Console and create a new S3 bucket if you do not have one ready for use. Name your bucket and choose the appropriate region. Ensure the bucket's permissions and policies are set to allow the necessary access for the data you are uploading.
Use the AWS CLI to upload your transformed data files to the S3 bucket. You can do this by running a command like `aws s3 cp localfile.json s3://your-bucket-name/` or incorporate this command into your script for automated uploads. Ensure that the file paths are correctly specified and that the upload command matches the data format you've chosen.
After uploading, verify that the data has been successfully transferred to S3. You can do this by checking the S3 console to ensure the files are present and by downloading them to confirm that their contents are intact. Additionally, verify that the permissions set on the S3 bucket and objects allow the necessary access for future retrieval and usage.
By following these steps, you can effectively move data from Sentry to Amazon S3 without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Sentry is a cloud-based error monitoring platform that helps developers identify and fix issues in their applications. It provides real-time alerts and detailed error reports, allowing developers to quickly diagnose and resolve issues before they impact users. Sentry supports a wide range of programming languages and frameworks, and integrates with popular development tools like GitHub, Jira, and Slack. With features like release tracking, performance monitoring, and customizable dashboards, Sentry helps teams improve the quality and reliability of their software. Overall, Sentry is a powerful tool for any development team looking to streamline their error monitoring and debugging processes.
Sentry's API provides access to a wide range of data related to application performance monitoring and error tracking. The following are the categories of data that can be accessed through Sentry's API:
1. Events: This includes information about errors, crashes, and other events that occur within an application.
2. Issues: This includes details about specific issues that have been identified within an application, including the number of occurrences, the severity of the issue, and any associated metadata.
3. Projects: This includes information about the projects being monitored by Sentry, including project settings, integrations, and other configuration details.
4. Users: This includes information about the users who are interacting with an application, including their IP addresses, browser information, and other relevant data.
5. Releases: This includes information about the releases of an application, including version numbers, release dates, and associated metadata.
6. Performance: This includes data related to the performance of an application, including response times, error rates, and other metrics.
Overall, Sentry's API provides a comprehensive set of data that can be used to monitor and optimize the performance of an application, as well as to identify and resolve errors and other issues.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: