

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by obtaining access to the Short.io API, which will allow you to extract the data you need. Sign into your Short.io account and navigate to the API section to generate an API key. This key will be necessary for authenticating your requests to the Short.io API.
Determine which data you need to migrate from Short.io to PostgreSQL. This could include URLs, click statistics, or user information. Consult the Short.io API documentation to understand the available endpoints and the structure of the data they return.
Prepare your local environment for data extraction and transformation. Install a programming language like Python or Node.js if you haven’t already. Ensure you have access to necessary libraries for making HTTP requests and interacting with PostgreSQL, such as `requests` and `psycopg2` for Python.
Write a script to make authenticated requests to the Short.io API using your API key. Fetch the required data by calling the appropriate API endpoints. Parse the JSON response to extract the necessary data fields. Store this data temporarily in a structured format such as a CSV file or an in-memory data structure like a list or dictionary.
Prepare the extracted data for insertion into your PostgreSQL database. This might involve data cleaning, formatting, and ensuring the data types match those of your PostgreSQL tables. For instance, convert date strings to `datetime` objects and ensure numerical data is correctly formatted.
Set up a PostgreSQL database if you haven’t already. Create the necessary tables that will store your Short.io data. Define the schema based on the data structure you are transferring. Ensure that data types and constraints align with your transformed data.
Use a database client like `psycopg2` in Python to connect to your PostgreSQL database. Write a script to iterate over your transformed data and insert it into the appropriate tables using SQL `INSERT` statements. Handle any exceptions or errors to ensure data integrity and confirm that all data has been successfully transferred.
By following these steps, you can manually transfer data from Short.io to a PostgreSQL database without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Shorten, personalize, and share fully branded short URLs.
Short.io's API provides access to various types of data related to URL shortening and link management. The categories of data that can be accessed through the API include:
1. Short links: Information about the short links created using the Short.io platform, including the original long URL, the shortened URL, and the date and time the link was created.
2. Clicks: Data related to the clicks on the short links, including the number of clicks, the location of the clicks, and the device used to access the link.
3. Users: Information about the users who have created accounts on the Short.io platform, including their email addresses, names, and account settings.
4. Domains: Data related to the domains used to create short links, including the domain name, the number of links created using the domain, and the status of the domain.
5. Teams: Information about the teams created on the Short.io platform, including the team name, the team members, and the team settings.
Overall, the Short.io API provides access to a wide range of data related to URL shortening and link management, allowing developers to build custom applications and integrations that leverage this data.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





