

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before you start, familiarize yourself with the SpaceX API's data structure and endpoints. Review the Typesense documentation to understand how to structure the data for indexing. Ensure you have a clear understanding of the fields you want to extract from SpaceX and how they map to the fields in Typesense.
Set up your local development environment. Install Python (or your preferred language) and any necessary libraries for making HTTP requests (e.g., `requests` in Python). Also, install the Typesense client library for your chosen language. Ensure you have access to the server where Typesense is hosted.
Write a script to fetch data from the SpaceX API. Use HTTP GET requests to pull the data. For example, in Python, you can use the `requests.get()` function to retrieve the data from endpoints like `https://api.spacexdata.com/v4/launches`. Handle any exceptions and ensure the data is in a usable format (e.g., JSON).
Transform the fetched data into a format suitable for Typesense indexing. This involves creating a schema in Typesense that matches the data structure from SpaceX. Map the necessary fields, ensuring that data types match (e.g., strings, integers, dates). Write a function to convert the SpaceX JSON data into a format that adheres to your Typesense schema.
Use the Typesense client to create a collection in your Typesense server. Define the schema with fields that correspond to the transformed SpaceX data. Example fields could include `id`, `mission_name`, `launch_date`, etc. Ensure your Typesense server is running and accessible.
Write a function to insert the transformed data into your Typesense collection. Use the Typesense client library's import method to batch insert the data for efficiency. Monitor the server logs for successful indexing and handle any errors (such as schema mismatches or connection issues).
After inserting the data, write queries to verify that the data was correctly indexed in Typesense. Check the data integrity by querying specific fields or records. Ensure that the search functionality behaves as expected. Test with sample queries to ensure the data retrieval is accurate and performant. Fine-tune indexing if necessary to optimize search results.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
SpaceX manufactures, designs and launches advanced rockets and spacecraft. SpaceX has successfully launched 11 Falcon 9 carrier rockets this year, remaining two more launches already planned. SpaceX is developing a low latency, broadband internet system to meet the needs. SpaceX API provides real-time SpaceX satellite tracking data. SpaceX provides two-way satellite-based internet service (“Services”), receivable with a Starlink dish, Wi-Fi router, power supply and mounts ("Starlink Kit” or “Kit”).
The SpaceX API provides access to a wide range of data related to SpaceX's activities and operations. Some of the categories of data that can be accessed through the API include:
- Launches: Information about past, present, and future SpaceX launches, including launch dates, launch sites, payloads, and mission details.
- Rockets: Details about SpaceX's rockets, including their specifications, launch history, and current status.
- Capsules: Information about SpaceX's Dragon capsules, including their specifications, flight history, and current status.
- Cores: Details about SpaceX's rocket cores, including their specifications, launch history, and current status.
- Landing Pads: Information about SpaceX's landing pads, including their locations, status, and history of use.
- Roadster: Data related to SpaceX's Falcon Heavy launch of Elon Musk's Tesla Roadster, including its current location and trajectory.
- Ships: Details about SpaceX's ships, including their specifications, current location, and history of use.
- Payloads: Information about payloads launched by SpaceX, including their specifications, mission details, and current status.
Overall, the SpaceX API provides a wealth of data for those interested in tracking SpaceX's activities and staying up-to-date on the latest developments in space exploration.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: