Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Tempo is a global software-as-a-service company (SaaS) focused on providing companies with productivity and time management tools to drive more efficient and successful business. Products include resource planning, budget management, and world-class time tracking solutions for Jira (Tempo has claimed ownership to the #1 Jira time tracking app since 2010). Tempo drives business success by providing software that affords insights into teams’ productivity capabilities.
Tempo's API provides access to a wide range of data related to time tracking, resource management, and project management. The following are the categories of data that can be accessed through Tempo's API:
1. Time tracking data: This includes data related to time entries, such as start and end times, duration, and comments.
2. Resource management data: This includes data related to resources, such as employee information, team information, and workload.
3. Project management data: This includes data related to projects, such as project information, project status, and project timelines.
4. Billing and invoicing data: This includes data related to billing and invoicing, such as billing rates, invoices, and payment information.
5. Reporting data: This includes data related to reporting, such as timesheet reports, project reports, and resource reports.
6. Custom fields data: This includes data related to custom fields, such as custom fields for time entries, resources, and projects.
Overall, Tempo's API provides a comprehensive set of data that can be used to manage time, resources, and projects more effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
Tempo is a global software-as-a-service company (SaaS) focused on providing companies with productivity and time management tools to drive more efficient and successful business. Products include resource planning, budget management, and world-class time tracking solutions for Jira (Tempo has claimed ownership to the #1 Jira time tracking app since 2010). Tempo drives business success by providing software that affords insights into teams’ productivity capabilities.
For huge analytical tables, Apache Iceberg is a high-performance format. Using Apache Iceberg, engines such as Spark, Trino, Flink, Presto, Hive and Impala can safely work with the same tables, at the same time, providing the reliability and simplicity of SQL tables to big data. With Apache Iceberg, you can merge new data, update existing rows, and delete specific rows. Data files can be eagerly rewritten or deleted deltas can be used to make updates faster.
1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.
2. Click on the "Add Source" button in the top right corner of the screen.
3. In the search bar, type "Tempo" and select the Tempo source connector from the list of available connectors.
4. Enter a name for the connector and click on the "Next" button.
5. Enter your Tempo API credentials, including the API key and the base URL for your Tempo instance.
6. Test the connection to ensure that the credentials are correct and the connection is successful.
7. Select the data you want to replicate from Tempo, including the projects, tasks, and time entries.
8. Choose the replication frequency and the destination where you want to store the replicated data.
9. Click on the "Create Source" button to save the connector and start the replication process.
10. Monitor the replication process and troubleshoot any errors that may occur using the Airbyte platform's built-in tools and resources.
1. Open the Airbyte platform and navigate to the "Destinations" tab on the left-hand side of the screen.
2. Click on the "Apache Iceberg" destination connector and select "Create new connection."
3. Enter a name for your connection and provide the necessary credentials for your Apache Iceberg database, including the host, port, database name, username, and password.
4. Test the connection to ensure that it is successful. 5. Select the tables or data sources that you want to replicate to your Apache Iceberg database.
6. Configure any additional settings or options for your connection, such as the frequency of data replication or any transformations that you want to apply to your data.
7. Save your connection and start the replication process.
8. Monitor the progress of your data replication and troubleshoot any issues that may arise.
9. Once the replication process is complete, verify that your data has been successfully replicated to your Apache Iceberg database.
10. Use your Apache Iceberg database to analyze and query your data as needed.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Tempo's API provides access to a wide range of data related to time tracking, resource management, and project management. The following are the categories of data that can be accessed through Tempo's API:
1. Time tracking data: This includes data related to time entries, such as start and end times, duration, and comments.
2. Resource management data: This includes data related to resources, such as employee information, team information, and workload.
3. Project management data: This includes data related to projects, such as project information, project status, and project timelines.
4. Billing and invoicing data: This includes data related to billing and invoicing, such as billing rates, invoices, and payment information.
5. Reporting data: This includes data related to reporting, such as timesheet reports, project reports, and resource reports.
6. Custom fields data: This includes data related to custom fields, such as custom fields for time entries, resources, and projects.
Overall, Tempo's API provides a comprehensive set of data that can be used to manage time, resources, and projects more effectively.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: