Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by creating a Google Cloud Project if you haven't already. This will provide you with access to BigQuery and other Google Cloud resources. Enable billing and ensure that BigQuery API is activated within your project settings.
Navigate to the BigQuery console within your Google Cloud Project. Create a new dataset where you will store the data retrieved from the Guardian API. Name the dataset appropriately, considering the type of data you plan to store.
Visit the Guardian API website and register for API access. Obtain an API key which will be used to authenticate your requests. Review the API documentation to understand the endpoints and data formats available.
Use a scripting language like Python to make HTTP requests to the Guardian API. Utilize libraries such as `requests` to send GET requests to the desired endpoints. Include your API key in the request headers to authenticate. Parse the JSON responses to extract the necessary data fields.
Process the data retrieved from the Guardian API to match the schema of your BigQuery table. This may involve data cleaning, selecting necessary fields, and reformatting data types (e.g., converting date strings to timestamps). Use Python libraries like `pandas` to manipulate and structure your data for upload.
Utilize the Google Cloud Client Library for Python to interact with BigQuery. First, create a table in your dataset that matches your data schema. Then, use the `load_table_from_dataframe` method from the BigQuery client to upload your transformed data from a pandas DataFrame to the BigQuery table.
To automate the data transfer process, consider setting up a cron job or using Cloud Functions. Write a script to perform the data retrieval, transformation, and loading steps, and schedule it to run at regular intervals. This ensures that your BigQuery dataset remains up-to-date with the latest data from the Guardian API.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The Guardian API determines to query and download data from this publication's database. The Guardian API source can sync data from the The Guardian. The Guardian API integrations with key benefits administration platforms exclude the complexity of plan setup and data exchange while ensuring speed and accuracy. It builds incredible apps with our rich archive of content. The Guardian API generally stores all articles, images, audio and videos dating back to 1999.
The Guardian API provides access to a wide range of data related to news and media. The types of data that can be accessed through the API can be broadly categorized as follows:
1. News articles: The API provides access to news articles published by The Guardian, including text, images, and multimedia content.
2. Tags: The API provides access to tags associated with news articles, which can be used to categorize and filter content.
3. Sections: The API provides access to sections of The Guardian website, such as news, sport, and culture.
4. Contributors: The API provides access to information about contributors to The Guardian, including authors, editors, and photographers.
5. Comments: The API provides access to comments posted by readers on news articles published by The Guardian.
6. User data: The API provides access to user data, such as user profiles and preferences, for users who have registered with The Guardian website.
Overall, The Guardian API provides a rich source of data for developers and researchers interested in news and media.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: