Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Timely account. Navigate to the section where your data is stored. Most platforms, including Timely, offer an export feature. Look for an option to export your data, typically found under settings or tools, and choose a format that Google Sheets can accept, such as CSV or Excel.
Once the export process is initiated, Timely will prepare your data for download. Download the file to your local machine. Ensure that the downloaded file is saved in a location you can easily access, and verify that the file format is compatible (CSV or XLSX).
Open your browser and go to Google Sheets by navigating to https://sheets.google.com. Log in with your Google account if you are not already logged in. Create a new spreadsheet by clicking on the 'Blank' option.
In your new Google Sheets document, go to the 'File' menu and select 'Import.' Choose the 'Upload' tab and drag your exported file from Timely into the upload area or use the 'Select a file from your device' option to locate it on your computer. Google Sheets will then upload the file.
Once the file is uploaded, Google Sheets will prompt you with import settings. Choose the appropriate option for how you want to import the data, such as 'Replace spreadsheet' or 'Append to current sheet.' Make sure to select the correct delimiter (usually a comma for CSV files) and click 'Import data.'
After importing, review the data in Google Sheets to ensure it has been imported correctly. Check for any discrepancies or formatting issues. Use Google Sheets' tools to adjust column widths, set number formats, or apply any necessary data validation to maintain data integrity.
Once you’ve verified the data, make sure to save your work. Use the 'Share' button in the top right corner to share the spreadsheet with others if needed. You can adjust sharing settings to control who can view or edit the data, ensuring collaboration with your team or stakeholders.
By following these steps, you can effectively transfer your data from Timely to Google Sheets without the need for third-party tools or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Timely's time tracking software , which helps teams stay connected and report accurately across client, project and employee hours. Using Timely's software one can manage their business, connect with their peers and access education from global industry. Timely is used to narrate something that happens at the right time or the scheduled time, as in a timely payment or a timely delivery. Timely Event Software, the top event technology and tools to automate and simplify the management of events, venues and learning.
Timely's API provides access to a wide range of data related to time tracking and project management. The following are the categories of data that can be accessed through Timely's API:
1. Time tracking data: This includes data related to the time spent on tasks, projects, and clients.
2. Project management data: This includes data related to project timelines, milestones, and budgets.
3. User data: This includes data related to user profiles, roles, and permissions.
4. Billing data: This includes data related to invoices, payments, and expenses.
5. Reporting data: This includes data related to reports on time tracking, project management, and billing.
6. Integration data: This includes data related to integrations with other tools and platforms. 7. Custom data: This includes data that can be customized based on the specific needs of the user.
Overall, Timely's API provides a comprehensive set of data that can be used to improve time tracking, project management, and billing processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: