

.png)
Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To extract data from TMDb, you need an API key. Register for a free account on TMDb's website and navigate to your account settings to generate an API key. This key will allow you to make requests to TMDb's API.
Familiarize yourself with TMDb's API documentation. Identify the endpoints you need to extract the desired data, such as movie details, genres, or credits. Make sure you understand the structure of the API response, which is typically in JSON format.
Choose a programming language that you're comfortable with, such as Python. Ensure you have the necessary environment set up, including any libraries you'll use for making HTTP requests (e.g., `requests` for Python) and handling JSON data.
Write a script to make HTTP GET requests to the TMDb API endpoints using your API key. For example, in Python, use the `requests` library to fetch data. Parse the JSON responses to extract the relevant data fields you need, such as movie titles, release dates, and ratings.
Organize the data you retrieved into a format suitable for CSV storage. Typically, you'll want to structure each entry as a dictionary or list with consistent keys or indexes that represent column headers in the CSV file, such as "Title", "Release Date", "Rating", etc.
Use a CSV library in your chosen programming language to write the structured data to a CSV file. In Python, the `csv` module allows you to write rows of data to a CSV file. Open a file in write mode and use `csv.writer` to write the headers first, followed by each row of data.
After writing the data to a CSV file, open it to ensure the data is correctly formatted and complete. Check for any missing values or discrepancies. If necessary, adjust your script to handle exceptions or edge cases, such as missing data fields in the API response.
By following these steps, you can successfully move data from TMDb to a CSV file without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
TMDb is a community built movie and TV database. The Movie Database (TMDb) is a well known, popular, user editable database for movies and TV shows. TMDb.org, which is a crowd-sourced movie information database used by many film-related consoles, sites and apps, like XBMC, Myth TV and Plex. The Movie Database (TMDb) is a database of TV shows and movies which permits users to edit data. Since 2008, the users have been editing and adding the data through TMDb.
The TMDb (The Movie Database) API provides access to a wide range of data related to movies and TV shows. The following are the categories of data that can be accessed through the TMDb API:
- Movie data: This includes information about movies such as title, release date, runtime, budget, revenue, genres, production companies, and more.
- TV show data: This includes information about TV shows such as title, air date, episode count, season count, networks, genres, and more.
- People data: This includes information about people involved in movies and TV shows such as actors, directors, writers, and producers.
- Keyword data: This includes information about keywords associated with movies and TV shows such as plot keywords, genres, and more.
- Collection data: This includes information about collections of movies such as franchises, trilogies, and more.
- Review data: This includes information about reviews of movies and TV shows such as user ratings and reviews.
- Image data: This includes images related to movies and TV shows such as posters, backdrops, and stills.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: