Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting your Todoist data manually. Todoist allows users to export their data in CSV format. Navigate to the Todoist web application, go to the settings or project options, and select the option to export your data. Save the CSV file to your local machine.
Log in to your AWS Management Console and create an S3 bucket where you will store the exported Todoist data. Ensure you set the correct region and configure the bucket permissions according to your access requirements. Remember to note the bucket name and region for future steps.
Once your S3 bucket is set up, upload the CSV file from your local machine to the bucket. Use the AWS Management Console to navigate to your bucket and select the "Upload" option. Follow the prompts to complete the upload process.
Create an IAM role with appropriate permissions to access S3 and AWS Glue. You’ll need to attach policies like `AmazonS3FullAccess` and `AWSGlueServiceRole` to allow your services to interact with each other. This role will be used by AWS Glue for data processing.
In the AWS Glue service, create a new crawler to catalog the data stored in your S3 bucket. Define the data source as your S3 bucket and specify the IAM role you created. Run the crawler to scan your data and create a metadata table in the AWS Glue Data Catalog.
Create an AWS Glue job to transform the data as needed. You can use either the AWS Glue Studio or the script editor to define the ETL (Extract, Transform, Load) process. Configure the job to read from the Data Catalog, process the data to meet your requirements, and write it back to the S3 bucket or directly into your data lake.
Finally, move the processed data from S3 into your AWS Data Lake. Depending on how your data lake is set up, you may need to register new tables or partitions in your data lake's metadata catalog. Use AWS Athena or any other query service to verify the data integrity and accessibility within the data lake.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Todoist is a task management app that helps users organize and prioritize their to-do lists. It allows users to create tasks, set due dates and reminders, and categorize tasks into projects and sub-projects. The app also offers features such as labels, filters, and comments to help users stay on top of their tasks. Todoist can be accessed on multiple devices, including desktop and mobile, and can be integrated with other apps such as Google Calendar and Dropbox. With its simple and intuitive interface, Todoist is a popular choice for individuals and teams looking to increase productivity and manage their workload efficiently.
Todoist's API provides access to a wide range of data related to tasks and projects. The following are the categories of data that can be accessed through Todoist's API:
1. Tasks: This includes all the tasks that are created in Todoist, including their due dates, priorities, labels, and comments.
2. Projects: This includes all the projects that are created in Todoist, including their names, colors, and parent projects.
3. Labels: This includes all the labels that are created in Todoist, including their names and colors.
4. Filters: This includes all the filters that are created in Todoist, including their names, queries, and colors.
5. Comments: This includes all the comments that are added to tasks in Todoist, including their content and authors.
6. Users: This includes all the users who have access to the Todoist account, including their names and email addresses.
7. Collaborators: This includes all the collaborators who have access to specific projects or tasks in Todoist, including their names and email addresses.
Overall, Todoist's API provides access to a comprehensive set of data that can be used to build powerful integrations and applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





