How to load data from Twitter to Clickhouse

Summarize

Learn how to use Airbyte to synchronize your Twitter data into Clickhouse within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Twitter connector in Airbyte

Connect to Twitter or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Clickhouse for your extracted Twitter data

Select Clickhouse where you want to import data from your Twitter source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Twitter to Clickhouse in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner

Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot

Chase Zieman

Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more

Rupak Patel

Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync Twitter to Clickhouse Manually

First, create a Twitter Developer account if you haven't already. Once your account is set up, create a new project and app within the developer portal. This will provide you with the necessary API keys and access tokens required to authenticate your requests to the Twitter API.

Use the OAuth 1.0a protocol to authenticate your application with the Twitter API. Write a script in a programming language of your choice (e.g., Python, using `requests` or `tweepy` library) to handle the OAuth process. This will allow you to query Twitter's API endpoints to fetch the data you need.

Identify which Twitter API endpoints you need to use to collect the specific data you're interested in, such as tweets, user profiles, or trends. Use your script to send requests to these endpoints and retrieve the data. You can use parameters to filter and refine the type of data pulled (e.g., by date range or specific hashtags).

Once you've collected the raw data from Twitter, process it to ensure it is clean and structured. This might involve parsing JSON data, handling missing or malformed data, and converting timestamps. Organize the data into a format that is compatible with ClickHouse, such as CSV or TSV.

Install ClickHouse on your server if it’s not already installed. Use the ClickHouse command-line client or a SQL interface to create a database and define tables that match the structure of your cleaned Twitter data. Ensure the data types in your ClickHouse tables are appropriate for the data you plan to import.

Ensure your processed Twitter data is in a format that can be easily inserted into ClickHouse. This typically involves saving the data as CSV or TSV files. Make sure to include any necessary headers and ensure the data matches the schema of your ClickHouse tables.

Use the ClickHouse `INSERT` command to load your data files into the database. This can be done by executing SQL commands through the ClickHouse client. For larger datasets, consider using the `clickhouse-client` tool with the `--query` flag to efficiently batch insert data, ensuring to optimize for performance by using ClickHouse’s capabilities like bulk inserts.

By following these steps, you can move data from Twitter into a ClickHouse warehouse using custom scripts and processes without relying on third-party connectors or integrations.

How to Sync Twitter to Clickhouse Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

Twitter is owned by American company based in San Francisco, California, which permits users to microblog, post videos, and social networking service. Twitter is a popular social networking platform that permits its users to send and read micro-blogs of up to 280-characters well known as “tweets”. Basically, Twitter is needed to be at most 140 characters long, and these messages are generally broadcast to all the users on Twitter. Twitter rolled out a paid verification system and laid off thousands of content moderators for the troubled social media platform.

Twitter's API provides access to a wide range of data, including:  

1. Tweets: The API allows access to all public tweets, as well as tweets from specific users or containing specific keywords.  
2. User data: This includes information about individual Twitter users, such as their profile information, follower and following counts, and tweet history.  
3. Trends: The API provides access to real-time and historical data on trending topics and hashtags.  
4. Analytics: Twitter's API also provides access to analytics data, such as engagement rates, impressions, and reach.  
5. Lists: The API allows access to Twitter lists, which are curated groups of Twitter users.  
6. Direct messages: The API provides access to direct messages sent between Twitter users.  
7. Search: The API allows for advanced search queries, including filtering by location, language, and sentiment.  
8. Ads: Twitter's API also provides access to advertising data, such as campaign performance metrics and targeting options.  

Overall, Twitter's API provides a wealth of data that can be used for a variety of purposes, from social media monitoring to marketing and advertising.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up Twitter to ClickHouse as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from Twitter to ClickHouse and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter