Summarize



Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, visit the US Census Bureau's API documentation at https://www.census.gov/data/developers/guidance/api-user-guide.html. Familiarize yourself with the available datasets and how to construct API queries. Register for an API key if required.
Using the documentation, build a query URL for the specific dataset you are interested in. For example, if you need population data, your query might look like: `https://api.census.gov/data/2020/dec/pl?get=NAME,P1_001N&for=state:*&key=YOUR_API_KEY`. Replace `YOUR_API_KEY` with your actual API key.
Write a script in a programming language like Python to send an HTTP GET request to the constructed API URL. You can use the `requests` library in Python for this purpose. Ensure your script handles any connection errors and retries if necessary.
Once you receive the response, parse the JSON data. The response will typically be in JSON format, so you can use Python's built-in `json` module to convert the response text into a Python dictionary or list. This will allow you to manipulate the data as needed.
Depending on your specific requirements, you may need to transform the data. This could involve filtering out unnecessary fields, renaming keys, or restructuring the data for better readability or usability. Use Python's data manipulation capabilities to achieve this.
After transforming the data, write it to a local JSON file. Use Python's `json.dump()` method to serialize the data into a JSON formatted string and write it to a file on your system. Make sure to specify the appropriate file path and handle any file I/O errors.
Finally, verify the integrity and correctness of the data. Open the JSON file and manually inspect a few entries to ensure data accuracy. Additionally, you can write a small validation script to check for common data issues such as missing fields or incorrect data types.
Following these steps will enable you to move data from the US Census website to a local JSON file without the need for third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The U.S. Census Bureau takes the pulse of the country’s economy. Producing economic data monthly, quarterly, yearly, and at five-year intervals requires high-tech solutions. The U.S. Census Bureau, in response to this need, has built an its first ever iPhone application, aimed at providing users with important economic statistics quickly and easily directly from an iPhone: the America’s Economy application.
The US Census Bureau's API provides access to a wide range of data related to the United States population and economy. The following are the categories of data that can be accessed through the API:
1. Demographic data: This includes information on population size, age, gender, race, ethnicity, and household characteristics.
2. Economic data: This includes data on employment, income, poverty, and industry.
3. Housing data: This includes data on housing units, occupancy, and characteristics of housing units.
4. Education data: This includes data on educational attainment, enrollment, and school districts.
5. Geographic data: This includes data on boundaries, locations, and maps.
6. Health data: This includes data on health insurance coverage, disability, and healthcare facilities.
7. Transportation data: This includes data on commuting patterns, modes of transportation, and traffic.
8. Business data: This includes data on businesses, employment, and revenue.
9. Agriculture data: This includes data on crops, livestock, and farms.
10. International data: This includes data on international trade, migration, and foreign-born population.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: