

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by identifying the specific dataset you want to move to Amazon S3. Visit the US Census Bureau's website and navigate to the "Data" section. Use their search functionality to find the dataset you need. Most datasets are available for download in formats like CSV, JSON, or Excel.
Once you have identified the desired dataset, download it to your local machine. Click on the download link provided on the US Census website. Ensure that the dataset is saved in a directory that you can easily access for the next steps.
To interact with Amazon S3 without third-party tools, you'll need the AWS Command Line Interface (CLI). Download and install the AWS CLI from the official AWS website. After installation, configure it by running `aws configure` in your terminal, and input your AWS Access Key, Secret Key, region, and output format when prompted.
Open your AWS Management Console and navigate to S3. Click on "Create bucket" and follow the prompts to name your bucket and select the region. Ensure your bucket name is unique across all of AWS. Finish by setting any necessary permissions or configurations, such as versioning or logging, according to your data requirements.
If necessary, preprocess the dataset to ensure it is in the correct format for your needs. This might involve cleaning the data, converting formats, or compressing files to save space. Tools like Python or command-line utilities (e.g., `sed`, `awk`, `gzip`) can be used for preprocessing.
With the AWS CLI configured and your data ready, use the `aws s3 cp` command to upload the file to your S3 bucket. For example, the command `aws s3 cp /path/to/your/file.csv s3://your-bucket-name/` will upload your local file to the specified S3 bucket. Verify the upload by checking the AWS Management Console or using the `aws s3 ls s3://your-bucket-name/` command.
Once the upload is complete, confirm that the data is correctly stored in your S3 bucket. Check file integrity by comparing file sizes or using checksums. Additionally, review and adjust the bucket's permissions and policies to ensure that the data is secure, setting access policies as needed to restrict or allow access.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The U.S. Census Bureau takes the pulse of the country’s economy. Producing economic data monthly, quarterly, yearly, and at five-year intervals requires high-tech solutions. The U.S. Census Bureau, in response to this need, has built an its first ever iPhone application, aimed at providing users with important economic statistics quickly and easily directly from an iPhone: the America’s Economy application.
The US Census Bureau's API provides access to a wide range of data related to the United States population and economy. The following are the categories of data that can be accessed through the API:
1. Demographic data: This includes information on population size, age, gender, race, ethnicity, and household characteristics.
2. Economic data: This includes data on employment, income, poverty, and industry.
3. Housing data: This includes data on housing units, occupancy, and characteristics of housing units.
4. Education data: This includes data on educational attainment, enrollment, and school districts.
5. Geographic data: This includes data on boundaries, locations, and maps.
6. Health data: This includes data on health insurance coverage, disability, and healthcare facilities.
7. Transportation data: This includes data on commuting patterns, modes of transportation, and traffic.
8. Business data: This includes data on businesses, employment, and revenue.
9. Agriculture data: This includes data on crops, livestock, and farms.
10. International data: This includes data on international trade, migration, and foreign-born population.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





