

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Vantage account. Navigate to the section where your data is stored. Look for an option to export the data, typically found under settings or via a download button. Choose a compatible format such as CSV or Excel, and save the exported file to your computer.
Open the exported file using a spreadsheet program like Microsoft Excel or Google Sheets. Check the data for any inconsistencies or errors that may have occurred during the export process. Make necessary adjustments to ensure the data is clean and well-structured.
Open your web browser and navigate to Google Sheets (sheets.google.com). Sign in with your Google account credentials. If you do not have an account, you'll need to create one to proceed.
Once logged in, click on the "+ Blank" option to create a new Google Sheets document. This will serve as the destination for your data from Vantage.
In your new Google Sheets document, click on "File" in the menu bar, then select "Import." Choose the "Upload" tab, and locate the exported file from Vantage on your computer. Follow the prompts to import the data, ensuring you select options that best preserve the structure of your data, such as "Replace current sheet."
After the import is complete, review your data in Google Sheets. Adjust column widths, apply formatting (like bold headers), and ensure the data is organized in a readable manner. Use Google Sheets' tools to perform any additional data cleaning or formatting as needed.
Once you are satisfied with the data in your Google Sheets document, click on "File" and select "Save." To share the document with others, click on the "Share" button in the upper-right corner, and enter the email addresses of the recipients. Customize sharing settings to control access and editing permissions.
By following these steps, you can efficiently move data from Vantage to Google Sheets without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Vantage is a service that helps businesses analyze and reduce their AWS costs. Vantage's mission is to build a suite of tools that make it easy for engineering, leadership, and finance to analyze, collaborate on and optimize their cloud infrastructure costs.
Vantage's API provides access to a wide range of data categories, including:
1. Financial data: This includes stock prices, market indices, and financial statements of companies.
2. Economic data: This includes data on GDP, inflation, unemployment rates, and other macroeconomic indicators.
3. Social media data: This includes data from social media platforms such as Twitter, Facebook, and Instagram.
4. News data: This includes news articles from various sources, including newspapers, magazines, and online news portals.
5. Weather data: This includes data on temperature, precipitation, and other weather-related information.
6. Geographic data: This includes data on locations, maps, and geospatial information.
7. Sports data: This includes data on sports events, scores, and statistics.
8. Health data: This includes data on health conditions, medical treatments, and healthcare providers.
9. Environmental data: This includes data on environmental conditions, pollution levels, and climate change.
Overall, Vantage's API provides access to a diverse range of data categories, making it a valuable resource for businesses, researchers, and developers.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: