

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with the data export capabilities of Visma e-conomic. Typically, Visma e-conomic allows you to export data in formats such as CSV, Excel, or XML. Determine which format is most suitable for your data needs and ensure you have access rights to export the necessary data.
Log in to your Visma e-conomic account and navigate to the section where your desired data is stored. Use the export function to download the data in your chosen format (CSV, Excel, or XML). Save the exported file on your local system, ensuring it is organized and easily accessible for the next steps.
Open the exported data file and review its contents. Clean up the data as needed by removing any unnecessary columns, correcting any data inconsistencies, and ensuring that the data structure aligns with how you plan to index it in Typesense. If necessary, convert the data into a JSON format, which is the preferred format for Typesense.
If you haven't already, download and install Typesense on your local machine or server. Follow the installation instructions provided in the Typesense documentation, ensuring that you have the server running and accessible. Configure any necessary settings, such as port numbers or API keys, to facilitate communication with the server.
With your Typesense server running, create a new collection for storing your data. Use the Typesense API to define the collection schema, specifying fields and data types that match your prepared data. Then, use the API to upload your data to the collection. This can involve writing a script in a programming language like Python to automate the process of reading your data file and indexing each record into Typesense.
After indexing, query the Typesense collection to verify that the data has been correctly uploaded. Check for any discrepancies between the original data and what is now in Typesense. Use the Typesense dashboard or API to run sample queries and ensure that the data is searchable and returns the expected results.
Establish a process for regularly updating the data in Typesense to reflect any changes in Visma e-conomic. This could be done by scheduling regular exports from Visma e-conomic, followed by re-indexing the updated data in Typesense. Automate this process using scripts and cron jobs to ensure that your Typesense data remains current without manual intervention.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Visma e-conomic having other systems like e-commerce, payment service providers, point of sale, marketplaces, logistic and accounting systems. It generally offers businesses with a range of software solutions, including an online accounting program. After all, Visma e-conomic is the market leader in cloud-based financial systems in Denmark and has over 160,000 customers. Visma e-conomic is one kinds of e-commerce market place that is aimed at both small and medium-sized businesses and accountants and bookkeepers.
Visma E-conomic's API provides access to a wide range of data related to accounting and financial management. The following are the categories of data that can be accessed through the API:
1. Customers and Suppliers: Information about customers and suppliers, including contact details, payment terms, and credit limits.
2. Invoices: Details of invoices issued and received, including invoice numbers, dates, amounts, and payment status.
3. Products and Services: Information about products and services offered by the business, including prices, descriptions, and stock levels.
4. Bank Transactions: Details of bank transactions, including deposits, withdrawals, and transfers.
5. Accounting Journals: Information about accounting journals, including general ledger entries, accounts payable, and accounts receivable.
6. VAT: Details of VAT transactions, including VAT rates, amounts, and tax codes.
7. Reports: Access to a range of financial reports, including balance sheets, income statements, and cash flow statements.
Overall, the Visma E-conomic API provides comprehensive access to financial data, enabling businesses to streamline their accounting processes and gain valuable insights into their financial performance.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: