How to load data from Weatherstack to Redis

Learn how to use Airbyte to synchronize your Weatherstack data into Redis within minutes.

Summarize this article with:

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Weatherstack connector in Airbyte

Connect to Weatherstack or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Redis for your extracted Weatherstack data

Select Redis where you want to import data from your Weatherstack source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Weatherstack to Redis in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner

Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot

Chase Zieman

Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more

Rupak Patel

Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync Weatherstack to Redis Manually

To start using the Weatherstack API, sign up at their website to obtain an API key. This key is essential for authenticating requests to the API and accessing weather data.

Ensure you have the necessary libraries installed for making HTTP requests and interacting with Redis. If you're using Python, install `requests` for HTTP requests and `redis-py` for interacting with Redis:
```bash
pip install requests redis
```

Write a script to make an HTTP GET request to the Weatherstack API using your API key. Specify the endpoint and the necessary parameters to fetch the required weather data:
```python
import requests

api_key = 'your_api_key'
base_url = 'http://api.weatherstack.com/current'
location = 'New York'

response = requests.get(base_url, params={
'access_key': api_key,
'query': location
})

if response.status_code == 200:
weather_data = response.json()
else:
raise Exception("Error fetching data from Weatherstack")
```

Extract and prepare the relevant data from the JSON response received from Weatherstack for storage in Redis. Identify the specific fields you need (e.g., temperature, humidity) and structure them as needed:
```python
data_to_store = {
'temperature': weather_data['current']['temperature'],
'humidity': weather_data['current']['humidity'],
'wind_speed': weather_data['current']['wind_speed']
}
```

Establish a connection to your Redis database using the `redis-py` library. Ensure Redis is running on your server or local machine, and configure the connection parameters as needed:
```python
import redis

redis_client = redis.StrictRedis(host='localhost', port=6379, db=0)
```

Use the Redis client to store the prepared weather data. You can store data as a hash, string, or in any other suitable Redis data structure. For storing multiple key-value pairs, a hash is often suitable:
```python
redis_key = f'weather:{location}'
redis_client.hmset(redis_key, data_to_store)
```

To keep the weather data in Redis up-to-date, schedule your script to run at regular intervals using a task scheduler like `cron` on Linux or Task Scheduler on Windows. This ensures the data is refreshed periodically:
- On Linux, add a cron job by editing the crontab with `crontab -e` and adding a line like:
```bash
*/30 * * * * /usr/bin/python /path/to/your/script.py
```
- On Windows, use Task Scheduler to set a repeating task for the script.

By following these steps, you can effectively transfer weather data from Weatherstack to Redis without relying on third-party connectors, ensuring a streamlined and direct data flow process.

How to Sync Weatherstack to Redis Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

Weatherstack is a real-time and historical weather data API. This source connector mainly syncs data from the Weatherstack API. The weatherstack API prepares reliable and accurate global weather data in applications and this API allows to get current, historical, location lookup, and weather forecast. The Forecast API which is available on the Professional plan and higher. You can easily get accurate weather information instantly for any location in the world in lightweight JSON format through WeatherStack API.

Weatherstack's API provides access to a wide range of weather data, including:  

- Current weather conditions: temperature, humidity, pressure, wind speed and direction, visibility, cloud cover, and more.
- Historical weather data: past weather conditions for a specific location and date range.
- Forecast data: weather predictions for a specific location and date range.
- UV index: the level of ultraviolet radiation at a specific location.
- Air quality index: the level of air pollution at a specific location.
- Weather alerts: notifications of severe weather conditions, such as thunderstorms, hurricanes, and tornadoes.
- Astronomical data: sunrise and sunset times, moon phase, and more.

In addition to these categories of data, Weatherstack's API also provides location data, such as latitude and longitude coordinates, city and country names, and time zone information. This data can be used to customize weather reports for specific locations and to provide accurate weather information to users around the world.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up Weatherstack to Redis as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from Weatherstack to Redis and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter