

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, manually export your data from Webflow. Access the Webflow Designer, go to the "Collections" panel, and use the export feature to download your data in CSV format. This will serve as the raw file that you'll be moving into AWS.
Ensure you have an AWS account set up. Log in to the AWS Management Console and create an S3 bucket if you haven’t already. This S3 bucket will be the destination for your Webflow data. Note the bucket name and region for later use.
Install the AWS Command Line Interface (CLI) on your local machine if it's not already installed. Configure it using `aws configure` to set up your credentials securely. You’ll need your AWS Access Key, Secret Key, and the default region for your S3 bucket.
Using the AWS CLI, upload the CSV files you exported from Webflow to your S3 bucket. Use the command `aws s3 cp /path/to/your/file.csv s3://your-bucket-name/` to transfer the files. Ensure the files are correctly uploaded by checking the S3 console.
In the AWS Management Console, navigate to AWS Glue and create a new crawler. Configure the crawler to scan the S3 bucket where your data resides. Define a new database in Glue where the table schema can be stored. Run the crawler to populate the schema based on your CSV files.
If data transformation is necessary, create an AWS Glue ETL job. Use the AWS Glue Studio to script transformations in Python or Spark, adjusting the data format or structure as needed. Execute the ETL job to process and transform your data according to your requirements.
Finally, ensure that your processed data, once extracted and transformed, is stored back in a structured form in your S3 bucket. This forms your Data Lake in AWS. You can now leverage AWS Athena for querying or AWS Redshift for further data analysis, ensuring your data is ready for analytical processes.
By following these steps, you can successfully move data from Webflow to an AWS Data Lake, creating a foundation for robust data storage and analysis capabilities.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Webflow is basically a great platform for web designs that can build production-ready experiences without code. Webflow is the leading platform to design, and launch powerful websites visually that enables you to rapidly design and build production-scale responsive websites and it is also an popular platform of CMS, and hosting provider perfect for building production websites and prototypes without coding. Webflow is an overall innovative tool to simplify the lives of designers and teams all around and helping them work faster and deliver high quality websites.
Webflow's API provides access to a wide range of data related to websites built on the Webflow platform. The following are the categories of data that can be accessed through the API:
1. Site data: This includes information about the website, such as its name, URL, and settings.
2. Collection data: This includes data related to collections, such as the name, description, and fields.
3. Item data: This includes data related to individual items within a collection, such as the item's ID, name, and field values.
4. Asset data: This includes data related to assets used on the website, such as images, videos, and files.
5. Form data: This includes data related to forms on the website, such as form submissions and form fields.
6. E-commerce data: This includes data related to e-commerce functionality on the website, such as products, orders, and customers.
7. CMS data: This includes data related to the content management system used on the website, such as templates, pages, and content.
Overall, the Webflow API provides access to a wide range of data that can be used to build custom integrations and applications that interact with Webflow websites.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: