

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before moving data from Whisky Hunter to S3, identify and understand the export options provided by Whisky Hunter. Check if the platform allows data export through CSV, JSON, or any other downloadable format. This will determine the approach for data extraction.
Use the Whisky Hunter platform to manually export the data. Navigate to the appropriate section where data can be exported. Follow the platform's instructions to download the data in a supported format such as CSV or JSON. Save this file to your local machine.
Set up an AWS account if you don't have one. Navigate to the AWS Management Console and create a new S3 bucket where you will store the Whisky Hunter data. Ensure that the bucket name is unique and relevant to the data being stored.
Install the AWS Command Line Interface (CLI) on your local machine if it is not already installed. The AWS CLI will allow you to interact with AWS services directly from your terminal, facilitating the upload process.
Once the AWS CLI is installed, configure it using your AWS credentials. Run `aws configure` in your terminal and enter your AWS Access Key ID, Secret Access Key, region, and output format when prompted. This step is crucial for authenticating your commands with AWS services.
Use the AWS CLI to upload the exported Whisky Hunter data file to your S3 bucket. Open your terminal and execute a command similar to:
```
aws s3 cp /path/to/your/exported-file.csv s3://your-bucket-name/
```
Replace `/path/to/your/exported-file.csv` with the actual path to your data file and `your-bucket-name` with the name of your S3 bucket. This command copies the file from your local system to the specified S3 bucket.
After uploading, verify that the file is present in your S3 bucket by checking through the AWS Management Console. To ensure appropriate access, set permissions for the uploaded file. You can do this in the S3 console by selecting the file, going to the 'Permissions' tab, and configuring access policies as needed (e.g., read permissions for specific users or groups).
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Whisky Hunter is one kinds of market research tool which is largely used for collectors, investors & whisky lovers. There are many market intelligence remaining the access to the WhiskyHunter.net that have a database of previous and live lot prices from online whisky auctions.
Whisky Hunter's API provides access to a wide range of data related to the whisky industry. The following are the categories of data that can be accessed through the API:
1. Whisky information: This includes details about the whisky such as its name, brand, age, type, and region.
2. Distillery information: This includes information about the distillery where the whisky is produced, such as its name, location, and history.
3. Tasting notes: This includes information about the flavor profile of the whisky, such as its aroma, taste, and finish.
4. Ratings and reviews: This includes ratings and reviews of the whisky by other users, which can help users make informed decisions about which whiskies to try.
5. Price information: This includes information about the price of the whisky, both in retail stores and online.
6. Availability: This includes information about where the whisky is available for purchase, both online and in physical stores.
7. Whisky news and events: This includes news and updates about the whisky industry, as well as information about upcoming whisky events and festivals.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





