

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Log into your Workable account and navigate to the section where your data is stored (e.g., candidates, job postings). Use the export functionality provided by Workable to download the data as a CSV file. This option is usually available in the settings or options menu of the specific data page.
Once the data is exported from Workable, save the CSV file to a location on your computer that is easily accessible. Ensure that the file is saved with a recognizable name and in a folder where you can easily locate it for the next steps.
Open your web browser and go to Google Sheets by navigating to sheets.google.com. Log in with your Google account credentials if prompted. Create a new, blank spreadsheet by clicking on the “Blank” option.
In the newly created Google Sheet, click on “File” in the top menu, then select “Import.” In the Import menu, choose “Upload” and drag the CSV file from your computer into the upload area or select the file from your computer. Choose to replace the current sheet if it's empty or create a new sheet if you prefer.
Once the CSV file is imported, review the data to ensure that it has been transferred correctly. Check for any formatting issues or discrepancies that might have occurred during the import process. Adjust column widths, headings, and data types as necessary to enhance readability and usability.
Organize your data to suit the analysis or reporting needs. This might include sorting data, creating filters, or setting up conditional formatting rules to highlight specific information. Ensure the data is structured in a way that makes it easy to interpret and work with.
After organizing your data, save your Google Sheet by clicking on “File” and then “Save.” If you need to share the data with others, click on the “Share” button in the top right corner, enter the email addresses of the recipients, and set the appropriate permissions (view, comment, or edit).
By following these steps, you can efficiently move data from Workable to Google Sheets while maintaining control over the data handling process without relying on third-party tools.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Workable is a cloud-based recruitment software that helps businesses streamline their hiring process. It offers a range of tools to help companies manage job postings, applicant tracking, candidate communication, and interview scheduling. Workable also provides features such as resume parsing, candidate scoring, and background checks to help businesses make informed hiring decisions. The platform integrates with popular job boards and social media sites, making it easy for companies to reach a wider pool of candidates. Workable is designed to be user-friendly and customizable, allowing businesses to tailor the software to their specific needs.
Workable's API provides access to a wide range of data related to recruitment and hiring processes. The following are the categories of data that can be accessed through Workable's API:
1. Candidates: Information about candidates who have applied for a job, including their name, contact details, resume, cover letter, and application status.
2. Jobs: Details about the job openings, including the job title, description, location, salary, and hiring manager.
3. Hiring pipeline: Information about the hiring process, including the stages of the pipeline, the number of candidates in each stage, and the time spent in each stage.
4. Interviews: Details about the interviews conducted with candidates, including the date, time, location, interviewer, and feedback.
5. Reports: Analytics and insights related to recruitment and hiring processes, including the number of applications, the time to hire, and the cost per hire.
6. Integrations: Information about the third-party tools and services integrated with Workable, including the ATS, HRIS, and job boards.
Overall, Workable's API provides a comprehensive set of data that can help organizations streamline their recruitment and hiring processes and make data-driven decisions.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: