

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To extract data from Yandex Metrica, you need to set up API access. Log into your Yandex account, navigate to the Yandex Metrica dashboard, and go to the "API Access" section. Generate an OAuth token, which will be used to authenticate your API requests.
Determine which data you want to export from Yandex Metrica. This could include metrics like page views, sessions, bounce rates, etc. Familiarize yourself with the Yandex Metrica API documentation to understand how to construct queries for your desired metrics.
Create a script in a programming language like Python to make HTTP requests to the Yandex Metrica API. Use the requests library to handle these requests, incorporating your OAuth token for authentication. Construct your API query URL based on the data you wish to retrieve.
Upon receiving the data from Yandex Metrica, parse the JSON response to extract the needed information. Structure this data into a format suitable for storage, such as CSV or JSON format, depending on your preference for organizing the data in S3.
Install and configure the AWS Command Line Interface (CLI) on your local machine. Use `aws configure` to set up your credentials, specifying your AWS Access Key, Secret Access Key, and the region where your S3 bucket is located.
Extend your script to include functionality for uploading the structured data to Amazon S3. Utilize the AWS CLI within your script to execute the `aws s3 cp` command, which copies the local file to your designated S3 bucket. Ensure the script handles any exceptions or errors during this process.
Automate the data extraction and upload process by scheduling the script to run at regular intervals. Use cron jobs on Unix-based systems or Task Scheduler on Windows. This ensures that data is regularly updated in S3 without manual intervention.
By following these steps, you can efficiently move data from Yandex Metrica to Amazon S3 without relying on third-party connectors or integrations, enabling you to maintain greater control over the data transfer process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Yandex Metrica assists you to get narrative reports and record the actions of personal users, to detect what people are seeking for on your site. It is a web analytics tool that you can easily use to collect data about visitors to your website and their sessions. One can easily use Yandex Metrica web analytics tool to get visual reports and video recordings of user actions and track traffic sources. Yandex Metrica is the best plugin for WordPress.
Yandex Metrica's API provides access to a wide range of data related to website and mobile app performance. The types of data that can be accessed through the API can be categorized as follows:
1. User behavior data:
- Pageviews
- Sessions
- Bounce rate
- Time on site
- Clicks
- Goals and conversions
2. Traffic sources data:
- Referral sources
- Search engine traffic
- Direct traffic
- Social media traffic
- Paid traffic
3. Audience data:
- Demographics
- Geolocation
- Device type
- Browser type
- Language
4. Technical data:
- Page load time
- Error messages
- Server response time
- Browser and device compatibility
5. Custom data:
- Custom events
- Custom dimensions
- Custom metrics
Overall, Yandex Metrica's API provides a comprehensive set of data that can be used to analyze and optimize website and mobile app performance.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: