Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by thoroughly understanding the data format and structure used by Younium. Export a sample dataset from Younium in a format like CSV or JSON to get a clear view of the fields, data types, and relationships. This will help you prepare for any data transformation needed during the migration to DynamoDB.
Ensure you have an AWS account set up with the necessary permissions to create and manage DynamoDB tables. Familiarize yourself with the AWS Management Console, particularly the DynamoDB section. If needed, install the AWS CLI for easier command-line access to AWS services.
Based on your understanding of Younium’s data structure, design the appropriate table schema in DynamoDB. Decide on primary keys and any secondary indexes you may need. Keep in mind that DynamoDB is a NoSQL database and is optimized for specific access patterns, so design your tables considering query performance.
Use Younium’s API (if available) or manual export options to extract the data you need. Ensure the data is in a format that can be easily processed, such as JSON or CSV. If the API is used, you might need to write a script to pull data in batches, especially if dealing with large datasets.
Transform the extracted data to match the structure expected by your DynamoDB tables. This might involve converting data types, nesting JSON objects, or flattening data structures. Use scripting languages like Python or JavaScript to automate this transformation process if the dataset is large.
Use the AWS CLI, a custom script, or the AWS Management Console to load the transformed data into DynamoDB. For scripting, the AWS SDK for Python (Boto3) or JavaScript can be useful for writing batch write operations to insert the data. Make sure to handle any errors that occur during the load process, such as capacity exceptions or validation errors.
After loading the data, perform checks to ensure data integrity and completeness. Query the DynamoDB tables to verify that the data appears as expected and matches the original Younium data. Additionally, monitor the performance and adjust table capacity settings if needed to optimize for your access patterns.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Younium is the subscription management and billing platform for B2B SaaS that includes Subscription Management, Subscription Billing, Payments, invoicing/billing, financial reporting. Younium page contains the reference information and setup guide for this source connector. Younium symbolizes a Geometric Lowercase Sans-Serif Letter Y logo. Younium carries the transformative infrastructure to manage and improve your business. There have an active Technology Partnership between Younium and Visma remaining 205 partners and share 3 partners.
Younium's API provides access to a wide range of data related to energy consumption and production. The following are the categories of data that can be accessed through Younium's API:
1. Energy consumption data: This includes data related to the amount of energy consumed by a building or facility over a specific period of time.
2. Energy production data: This includes data related to the amount of energy produced by renewable energy sources such as solar panels or wind turbines.
3. Weather data: This includes data related to weather conditions such as temperature, humidity, and wind speed, which can impact energy consumption and production.
4. Building data: This includes data related to the physical characteristics of a building such as its size, layout, and construction materials.
5. Occupancy data: This includes data related to the number of people occupying a building or facility, which can impact energy consumption.
6. Equipment data: This includes data related to the energy consumption of specific equipment such as HVAC systems, lighting, and appliances.
7. Cost data: This includes data related to the cost of energy consumption and production, which can be used to optimize energy usage and reduce costs.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





