Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
To sync data the Zenloop API can assist both full refresh and incremental for both answer endpoints. One can select this connector that will copy only the new or updated data, or all rows in the tables and columns you establish for replication, a sync is always run. Zenloop combines perfect customer relationships and it is an integrated experience management floor which based on the Net Promoter Score. The Zenloop API contributes programmatic entry and integration to a customer feeback platform.
Zenloop's API provides access to various types of data related to customer feedback and satisfaction. The categories of data that can be accessed through Zenloop's API are:
1. Feedback data: This includes all the feedback received from customers through various channels such as email, web forms, and social media.
2. Customer data: This includes information about customers such as their name, email address, phone number, and other contact details.
3. Survey data: This includes data related to surveys conducted by the company to gather feedback from customers.
4. Net Promoter Score (NPS) data: This includes data related to the NPS score of the company, which is a measure of customer satisfaction and loyalty.
5. Sentiment analysis data: This includes data related to the sentiment of customer feedback, which can help companies understand the overall sentiment of their customers towards their products or services.
6. Analytics data: This includes data related to customer behavior, such as the number of visits to the company's website, the time spent on the website, and the pages visited.
Overall, Zenloop's API provides access to a wide range of data that can help companies gain insights into customer feedback and satisfaction, and make data-driven decisions to improve their products and services.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
To sync data the Zenloop API can assist both full refresh and incremental for both answer endpoints. One can select this connector that will copy only the new or updated data, or all rows in the tables and columns you establish for replication, a sync is always run. Zenloop combines perfect customer relationships and it is an integrated experience management floor which based on the Net Promoter Score. The Zenloop API contributes programmatic entry and integration to a customer feeback platform.
A cloud data platform, Snowflake Data Cloud provides a warehouse-as-a-service built specifically for the cloud. The Snowflake platform is designed to empower many types of data workloads, and offers secure, immediate, governed access to a comprehensive network of data. Snowflake’s innovative technology goes above the capabilities of the ordinary database, supplying users all the functionality of database storage, query processing, and cloud services in one package.
1. First, you need to obtain your Zenloop API key. You can find this by logging into your Zenloop account and navigating to the "API" section under "Settings". Copy the API key to your clipboard.
2. In Airbyte, navigate to the "Sources" tab and click "New Source". Select "Zenloop" from the list of available sources.
3. In the "Configure Zenloop" page, enter a name for your source and paste your API key into the "API Key" field.
4. Next, select the data you want to sync from Zenloop. You can choose to sync feedback, NPS scores, or both.
5. Choose the frequency at which you want to sync your data. You can choose to sync your data hourly, daily, or weekly.
6. Finally, click "Test Connection" to ensure that your credentials are correct and that Airbyte can connect to your Zenloop account.
7. If the test is successful, click "Create Source" to save your Zenloop source connector. Your data will now be synced according to the frequency you selected.
8. You can view the status of your Zenloop source connector by navigating to the "Sources" tab in Airbyte and clicking on your Zenloop source. From here, you can view the sync history, edit the source configuration, or delete the source connector if necessary.
1. First, navigate to the Airbyte website and log in to your account.
2. Once you are logged in, click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the Snowflake Data Cloud destination connector and click on it.
4. You will be prompted to enter your Snowflake account information, including your account name, username, and password.
5. After entering your account information, click on the "Test" button to ensure that the connection is successful.
6. If the test is successful, click on the "Save" button to save your Snowflake Data Cloud destination connector settings.
7. You can now use the Snowflake Data Cloud destination connector to transfer data from your Airbyte sources to your Snowflake account.
8. To set up a data transfer, navigate to the "Sources" tab on the left-hand side of the screen and select the source you want to transfer data from.
9. Click on the "Create New Connection" button and select the Snowflake Data Cloud destination connector as your destination.
10. Follow the prompts to set up your data transfer, including selecting the tables or data sources you want to transfer and setting up any necessary transformations or mappings.
11. Once you have set up your data transfer, click on the "Run" button to start the transfer process.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Zenloop's API provides access to various types of data related to customer feedback and satisfaction. The categories of data that can be accessed through Zenloop's API are:
1. Feedback data: This includes all the feedback received from customers through various channels such as email, web forms, and social media.
2. Customer data: This includes information about customers such as their name, email address, phone number, and other contact details.
3. Survey data: This includes data related to surveys conducted by the company to gather feedback from customers.
4. Net Promoter Score (NPS) data: This includes data related to the NPS score of the company, which is a measure of customer satisfaction and loyalty.
5. Sentiment analysis data: This includes data related to the sentiment of customer feedback, which can help companies understand the overall sentiment of their customers towards their products or services.
6. Analytics data: This includes data related to customer behavior, such as the number of visits to the company's website, the time spent on the website, and the pages visited.
Overall, Zenloop's API provides access to a wide range of data that can help companies gain insights into customer feedback and satisfaction, and make data-driven decisions to improve their products and services.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: