


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by logging into your Zoom account via a web browser. Once logged in, navigate to the "Reports" section located in the account management settings. This is where you can access various types of data related to your meetings, webinars, and participants.
Depending on what data you want to export (Meeting, Webinar, Usage, etc.), select the appropriate report type. For example, if you want to download meeting participant data, choose the "Usage Reports" and then "Meeting" reports.
After selecting the report type, specify the date range and any other criteria to filter the data you need. Zoom typically allows you to set a start and end date for the data you wish to download.
Once your criteria are set, click on the "Search" or "Generate" button to create the report. After the report is generated, you will have the option to download it, usually in CSV format. Click the download button to save the file to your computer.
Open the downloaded CSV file using a spreadsheet application like Microsoft Excel or Google Sheets. Review the data for any necessary adjustments or cleaning. Once reviewed, save the CSV file and use a script or tool to convert it to JSON format. You can write a simple Python script using the `csv` and `json` libraries to automate this conversion:
```python
import csv
import json
csv_file_path = 'path/to/your/file.csv'
json_file_path = 'path/to/your/file.json'
data = []
with open(csv_file_path, mode='r', encoding='utf-8') as csv_file:
csv_reader = csv.DictReader(csv_file)
for row in csv_reader:
data.append(row)
with open(json_file_path, mode='w', encoding='utf-8') as json_file:
json.dump(data, json_file, indent=4)
```
After conversion, open the JSON file in a text editor or a JSON viewer to verify its integrity. Ensure that all fields are correctly mapped and that there are no data inconsistencies or errors.
Once verified, save the JSON file to your desired local directory. Ensure that it is stored in a secure location, especially if it contains sensitive information. Regularly back up your important data and maintain organized file management practices to avoid data loss.
By following these steps, you can successfully move data from Zoom to a local JSON file without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zoom offers a communications platform that connects people through video, voice, chat, and content sharing. It has an easy, reliable cloud platform for video and audio conferencing, collaboration, chat, and webinars across mobile devices, desktops, telephones, and room systems. Zoom unifies cloud video conferencing,simple online meetings, and group messaging into one easy-to-use platform. The company's mission is to create a people-centric cloud service that transforms the real-time collaboration experience and improves the quality and effectiveness of communications.
Zoom's API provides access to a wide range of data related to Zoom meetings, webinars, users, and accounts. The following are the categories of data that can be accessed through Zoom's API:
1. Meetings: Information related to Zoom meetings, such as meeting ID, topic, start and end time, duration, participants, and recording.
2. Webinars: Data related to Zoom webinars, including webinar ID, topic, start and end time, duration, attendees, and recording.
3. Users: Information about Zoom users, such as user ID, name, email address, and account type.
4. Accounts: Data related to Zoom accounts, including account ID, name, email address, and billing information.
5. Reports: Various reports related to Zoom meetings and webinars, such as attendance reports, participant reports, and usage reports.
6. Recordings: Information related to Zoom meeting and webinar recordings, including recording ID, name, duration, and download links.
7. Settings: Data related to Zoom account and meeting settings, such as default meeting settings, user settings, and account settings.
Overall, Zoom's API provides a comprehensive set of data that can be used to analyze and optimize Zoom meetings and webinars, as well as manage Zoom accounts and users.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: