10 GitHub ETL Tools Used by Data Engineers in 2025

January 6, 2025

As a data engineer, pulling GitHub data into your analytics stack can be a complex maze of API calls, rate limits, and integration headaches. This guide cuts through the noise to compare the best GitHub ETL tools available today. Whether you're tracking development metrics or analyzing team productivity, you'll find clear, practical recommendations for tools that can reliably extract GitHub data to your destination of choice.

What is GitHub ETL?

GitHub ETL is the process of extracting data from GitHub (like repositories, issues, pull requests, and user activities), transforming it into analysis-ready formats, and loading it into destinations like data warehouses or analytics platforms. Think of it as building a pipeline that regularly pulls your GitHub data, cleans it up, and dumps it wherever you need it for analysis - all without manually downloading CSV files or writing custom API scripts.

How GitHub ETL Tools Work

Common Use Cases For GitHub ETL Tools

Engineering Workflow Analysis

Pull request timelines, review patterns, and commit frequency data to help teams optimize their development cycles. By analyzing reviewer response times and commit patterns, engineering managers can spot process bottlenecks and balance workloads across team members.

Repository Health & Activity

Track repository statistics, issue resolution times, and contributor metrics to gauge project health. Many teams I work with use this data to identify which repos need more attention and which coding standards are actually being followed (spoiler: it's not always what's in the docs).

Team Collaboration Insights

Combine user activity data, PR comments, and issue interactions to understand how teams work together. This helps spot communication patterns, identify subject matter experts based on their contributions, and ensure critical knowledge isn't siloed with a single developer.

Criterias to select the right GitHub ETL solution for you

As a company, you don't want to use one separate data integration tool for every data source you want to pull data from. So you need to have a clear integration strategy and some well-defined evaluation criteria to choose your GitHub ETL solution.

Here is our recommendation for the criteria to consider:

  • Connector need coverage: does the ETL tool extract data from all the multiple systems you need, should it be any cloud app or Rest API, relational databases or noSQL databases, csv files, etc.? Does it support the destinations you need to export data to - data warehouses, databases, or data lakes?
  • Connector extensibility: for all those connectors, are you able to edit them easily in order to add a potentially missing endpoint, or to fix an issue on it if needed?
  • Ability to build new connectors: all data integration solutions support a limited number of data sources.
  • Support of change data capture: this is especially important for your databases.
  • Data integration features and automations: including schema change migration, re-syncing of historical data when needed, scheduling feature
  • Efficiency: how easy is the user interface (including graphical interface, API, and CLI if you need them)?
  • Integration with the stack: do they integrate well with the other tools you might need - dbt, Airflow, Dagster, Prefect, etc. - ?
  • Data transformation: Do they enable to easily transform data, and even support complex data transformations? Possibly through an square integration with dbt
  • Level of support and high availability: how responsive and helpful the support is, what are the average % successful syncs for the connectors you need. The whole point of using ETL solutions is to give back time to your data team.
  • Data reliability and scalability: do they have recognizable brands using them? It also shows how scalable and reliable they might be for high-volume data replication.
  • Security and trust: there is nothing worse than a data leak for your company, the fine can be astronomical, but the trust broken with your customers can even have more impact. So checking the level of certification (SOC2, ISO) of the tools is paramount. You might want to expand to Europe, so you would need them to be GDPR-compliant too.

Top GitHub ETL tools

Here are the top GitHub ETL tools based on their popularity and the criteria listed above:

1. Airbyte

Airbyte is the leading open-source ELT platform, created in July 2020. Airbyte offers the largest catalog of data connectors—350 and growing—and has 40,000 data engineers using it to transfer data, syncing several PBs per month, as of June 2023. Major users include brands such as Siemens, Calendly, Angellist, and more. Airbyte integrates with dbt for its data transformation, and Airflow/Prefect/Dagster for orchestration. It is also known for its easy-to-use user interface, and has an API and Terraform Provider available.

What's unique about Airbyte?

Their ambition is to commoditize data integration by addressing the long tail of connectors through their growing contributor community. All Airbyte connectors are open-source which makes them very easy to edit. Airbyte also provides a Connector Development Kit to build new connectors from scratch in less than 30 minutes, and a no-code connector builder UI that lets you build one in less than 10 minutes without help from any technical person or any local development environment required..

Airbyte also provides stream-level control and visibility. If a sync fails because of a stream, you can relaunch that stream only. This gives you great visibility and control over your data.

Data professionals can either deploy and self-host Airbyte Open Source, or leverage the cloud-hosted solution Airbyte Cloud where the new pricing model distinguishes databases from APIs and files. Airbyte offers a 99% SLA on Generally Available data pipelines tools, and a 99.9% SLA on the platform.

2. Fivetran

Fivetran is a closed-source, managed ELT service that was created in 2012. Fivetran has about 300 data connectors and over 5,000 customers.

Fivetran offers some ability to edit current connectors and create new ones with Fivetran Functions, but doesn't offer as much flexibility as an open-source tool would.

What's unique about Fivetran?

Being the first ELT solution in the market, they are considered a proven and reliable choice. However, Fivetran charges on monthly active rows (in other words, the number of rows that have been edited or added in a given month), and are often considered very expensive.

Here are more critical insights on the key differentiations between Airbyte and Fivetran

3. Stitch Data

Stitch is a cloud-based platform for ETL that was initially built on top of the open-source ETL tool Singer.io. More than 3,000 companies use it.

Stitch was acquired by Talend, which was acquired by the private equity firm Thoma Bravo, and then by Qlik. These successive acquisitions decreased market interest in the Singer.io open-source community, making most of their open-source data connectors obsolete. Only their top 30 connectors continue to be  maintained by the open-source community.

What's unique about Stitch?

Given the lack of quality and reliability in their connectors, and poor support, Stitch has adopted a low-cost approach.

Here are more insights on the differentiations between Airbyte and Stitch, and between Fivetran and Stitch.

4. Matillion

Matillion is a self-hosted ELT solution, created in 2011. It supports about 100 connectors and provides all extract, load and transform features. Matillion is used by 500+ companies across 40 countries.

What's unique about Matillion?

Being self-hosted means that Matillion ensures your data doesn’t leave your infrastructure and stays on premise. However, you might have to pay for several Matillion instances if you’re multi-cloud. Also, Matillion has verticalized its offer from offering all ELT and more. So Matillion doesn't integrate with other tools such as dbt, Airflow, and more.

Here are more insights on the differentiations between Airbyte and Matillion.

5. Airflow

Apache Airflow is an open-source workflow management tool. Airflow is not an ETL solution but you can use Airflow operators for data integration jobs. Airflow started in 2014 at Airbnb as a solution to manage the company's workflows. Airflow allows you to author, schedule and monitor workflows as DAG (directed acyclic graphs) written in Python.

What's unique about Airflow?

Airflow requires you to build data pipelines on top of its orchestration tool. You can leverage Airbyte for the data pipelines and orchestrate them with Airflow, significantly lowering the burden on your data engineering team.

Here are more insights on the differentiations between Airbyte and Airflow.

6. Talend

Talend is a data integration platform that offers a comprehensive solution for data integration, data management, data quality, and data governance.

What’s unique with Talend?

What sets Talend apart is its open-source architecture with Talend Open Studio, which allows for easy customization and integration with other systems and platforms. However, Talend is not an easy solution to implement and requires a lot of hand-holding, as it is an Enterprise product. Talend doesn't offer any self-serve option.

7. Pentaho

Pentaho is an ETL and business analytics software that offers a comprehensive platform for data integration, data mining, and business intelligence. It offers ETL, and not ELT and its benefits.

What is unique about Pentaho?

What sets Pentaho data integration apart is its original open-source architecture, which allows for easy customization and integration with other systems and platforms. Additionally, Pentaho provides advanced data analytics and reporting tools, including machine learning and predictive analytics capabilities, to help businesses gain insights and make data-driven decisions.

However, Pentaho is also an Enterprise product, so hard to implement without any self-serve option.

8. Singer

Singer is also worth mentioning as the first open-source JSON-based ETL framework.  It was introduced in 2017 by Stitch (which was acquired by Talend in 2018) as a way to offer extendibility to the connectors they had pre-built. Talend has unfortunately stopped investing in Singer’s community and providing maintenance for the Singer’s taps and targets, which are increasingly outdated, as mentioned above.

9. Rivery

Rivery is another cloud-based ELT solution. Founded in 2018, it presents a verticalized solution by providing built-in data transformation, orchestration and activation capabilities. Rivery offers 150+ connectors, so a lot less than Airbyte. Its pricing approach is usage-based with Rivery pricing unit that are a proxy for platform usage. The pricing unit depends on the connectors you sync from, which makes it hard to estimate.

10. HevoData

HevoData is another cloud-based ELT solution. Even if it was founded in 2017, it only supports 150 integrations, so a lot less than Airbyte. HevoData provides built-in data transformation capabilities, allowing users to apply transformations, mappings, and enrichments to the data before it reaches the destination. Hevo also provides data activation capabilities by syncing data back to the APIs.

All those ETL tools are not specific to GitHub, you might also find some other specific data loader for GitHub data. But you will most likely not want to be loading data from only GitHub in your data stores.

Which data can you extract from GitHub?

GitHub's API provides access to a wide range of data related to repositories, users, organizations, and more. Some of the categories of data that can be accessed through the API include:  

- Repositories: Information about repositories, including their name, description, owner, collaborators, issues, pull requests, and more.

- Users: Information about users, including their username, email address, name, location, followers, following, organizations, and more.

- Organizations: Information about organizations, including their name, description, members, repositories, teams, and more.

- Commits: Information about commits, including their SHA, author, committer, message, date, and more.

- Issues: Information about issues, including their title, description, labels, assignees, comments, and more.

- Pull requests: Information about pull requests, including their title, description, status, reviewers, comments, and more.

- Events: Information about events, including their type, actor, repository, date, and more.  

Overall, the GitHub API provides a wealth of data that can be used to build powerful applications and tools for developers, businesses, and individuals.

How to start pulling data in minutes from GitHub

If you decide to test Airbyte, you can start analyzing your GitHub data within minutes in three easy steps:

Step 1: Set up GitHub as a source connector

1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.

2. Click on the "GitHub" source connector and select "Create a new connection."

3. Enter a name for the connection and click "Next."

4. Enter your GitHub credentials, including your username and personal access token. If you do not have a personal access token, you can create one by following the instructions provided in the Airbyte documentation.

5. Select the repositories you want to connect to Airbyte and click "Test Connection" to ensure that the connection is successful.

6. Once the connection is successful, click "Create Connection" to save the connection.

7. You can now use the GitHub source connector to extract data from your selected repositories and integrate it with other data sources in Airbyte.

Step 2: Set up a destination for your extracted GitHub data

Choose from one of 50+ destinations where you want to import data from your GitHub source. This can be a cloud data warehouse, data lake, database, cloud storage, or any other supported Airbyte destination.

Step 3: Configure the GitHub data pipeline in Airbyte

Once you've set up both the source and destination, you need to configure the connection. This includes selecting the data you want to extract - streams and columns, all are selected by default -, the sync frequency, where in the destination you want that data to be loaded, among other options.

And that's it! It is the same process between Airbyte Open Source that you can deploy within 5 minutes, or Airbyte Cloud which you can try here, free for 14-days.

Conclusion

This article outlined the criteria that you should consider when choosing a data integration solution for GitHub ETL/ELT. Based on your requirements, you can select from any of the top 10 ETL/ELT tools listed above. We hope this article helped you understand why you should consider doing GitHub ETL and how to best do it.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

Build powerful data pipelines seamlessly with Airbyte

Get to know why Airbyte is the best GitHub

Sync data from GitHub to 300+ other data platforms using Airbyte

Try a 14-day free trial
No card required.

Frequently Asked Questions

What is ETL?

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

What is GitHub?

GitHub is a renowned and respected development platform that provides code hosting services to developers for building software for both open source and private projects. It is a heavily trafficked platform where users can store and share code repositories and obtain support, advice, and help from known and unknown contributors. Three features in particular—pull request, fork, and merge—have made GitHub a powerful ally for developers and earned it a place as a (developers’) household name.

What data can you extract from GitHub?

GitHub's API provides access to a wide range of data related to repositories, users, organizations, and more. Some of the categories of data that can be accessed through the API include:  

- Repositories: Information about repositories, including their name, description, owner, collaborators, issues, pull requests, and more.

- Users: Information about users, including their username, email address, name, location, followers, following, organizations, and more.

- Organizations: Information about organizations, including their name, description, members, repositories, teams, and more.

- Commits: Information about commits, including their SHA, author, committer, message, date, and more.

- Issues: Information about issues, including their title, description, labels, assignees, comments, and more.

- Pull requests: Information about pull requests, including their title, description, status, reviewers, comments, and more.

- Events: Information about events, including their type, actor, repository, date, and more.  

Overall, the GitHub API provides a wealth of data that can be used to build powerful applications and tools for developers, businesses, and individuals.

How do I transfer data from GitHub?

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: set it up as a source, choose a destination among 50 available off the shelf, and define which data you want to transfer and how frequently.

What are top ETL tools to extract data from GitHub?

The most prominent ETL tools to extract data include: Airbyte, Fivetran, StitchData, Matillion, and Talend Data Integration. These ETL and ELT tools help in extracting data from various sources (APIs, databases, and more), transforming it efficiently, and loading it into a database, data warehouse or data lake, enhancing data management capabilities.

What is ELT?

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

Difference between ETL and ELT?

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.