Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Azure Table storage, which is a service that stores non-relational structured data in the cloud and it is well known as structured NoSQL data. Azure Table storage is a service that stores structured NoSQL data in the cloud, providing a key/attribute store with a schema less design. Azure Table storage is a very popular service used to store structured NoSQL data in the cloud, providing a Key/attribute store. One can use it to store large amounts of structured, non-relational data.
A fully managed data warehouse service in the Amazon Web Services (AWS) cloud, Amazon Redshift is designed for storage and analysis of large-scale datasets. Redshift allows businesses to scale from a few hundred gigabytes to more than a petabyte (a million gigabytes), and utilizes ML techniques to analyze queries, offering businesses new insights from their data. Users can query and combine exabytes of data using standard SQL, and easily save their query results to their S3 data lake.
Azure Table Storage's API gives access to structured data in the form of tables. The tables are composed of rows and columns, and each row represents an entity. The API provides access to the following types of data:
1. Partition Key: A partition key is a property that is used to partition the data in a table. It is used to group related entities together.
2. Row Key: A row key is a unique identifier for an entity within a partition. It is used to retrieve a specific entity from the table.
3. Properties: Properties are the columns in a table. They represent the attributes of an entity and can be of different data types such as string, integer, boolean, etc.
4. Timestamp: The timestamp is a system-generated property that represents the time when an entity was last modified.
5. ETag: The ETag is a system-generated property that represents the version of an entity. It is used to implement optimistic concurrency control.
6. Query results: The API allows querying of the data in a table based on specific criteria. The query results can be filtered, sorted, and projected to retrieve only the required data.
Overall, Azure Table Storage's API provides access to structured data that can be used for various purposes such as storing configuration data, logging, and session state management.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.