Top companies trust Airbyte to centralize their Data
Select your source
Select your destination
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Dremio is a data-as-a-service platform that enables businesses to access and analyze their data faster and more efficiently. It provides a self-service data platform that connects to various data sources, including cloud storage, databases, and data lakes, and allows users to query and analyze data using familiar tools like SQL and BI tools. Dremio's unique approach to data processing, called Data Reflections, accelerates query performance by automatically creating optimized copies of data in memory. This allows users to get insights from their data in real-time, without the need for complex data pipelines or data warehousing. Dremio also provides enterprise-grade security and governance features to ensure data privacy and compliance.
Amazon DynamoDB is a fully managed proprietary NoSQL database service that supports key–value and document data structures and is offered by Amazon.com as part of the Amazon Web Services portfolio. DynamoDB exposes a similar data model to and derives its name from Dynamo, but has a different underlying implementation.
Dremio's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as data from relational databases.
2. Semi-structured data: This includes data that has some structure, but is not organized into tables, such as JSON or XML data.
3. Unstructured data: This includes data that has no predefined structure, such as text documents, images, and videos.
4. Big data: This includes large volumes of data that cannot be processed using traditional data processing tools, such as Hadoop and Spark.
5. Streaming data: This includes real-time data that is generated continuously, such as data from IoT devices or social media feeds.
6. Cloud data: This includes data that is stored in cloud-based services, such as Amazon S3 or Microsoft Azure.
Overall, Dremio's API provides access to a wide range of data types, making it a powerful tool for data integration and analysis.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.