Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
OpenWeather is a team of IT experts and data scientists that has been practicing deep weather data science. OpenWeather App is an ad-free & free-to-use application that will assist you to plan your time around the weather in a concise and minimalistic manner. OpenWeather provides different APIs to get weather data from a location. You need to test if your connection has been properly composed. OpenWeather connector on Meta-API provides you access to all data and actions available on this API.
DuckDB is an in-process SQL OLAP database management system. It has strong support for SQL. DuckDB is borrowing the SQLite shell implementation. Each database is a single file on disk. It’s analogous to “ SQLite for analytical (OLAP) workloads” (direct comparison on the SQLite vs DuckDB paper here), whereas SQLite is for OLTP ones. But it can handle vast amounts of data locally. It’s the smaller, lighter version of Apache Druid and other OLAP technologies.
OpenWeather's API provides access to a wide range of weather-related data. The following are the categories of data that can be accessed through the API:
1. Current weather data: This includes real-time weather conditions such as temperature, humidity, wind speed, and direction.
2. Weather forecasts: This includes hourly, daily, and weekly weather forecasts for a specific location.
3. Historical weather data: This includes past weather conditions for a specific location, including temperature, humidity, and precipitation.
4. Air pollution data: This includes information on air quality, including levels of pollutants such as carbon monoxide, sulfur dioxide, and nitrogen dioxide.
5. UV index data: This includes information on the level of ultraviolet radiation in a specific location.
6. Weather maps: This includes various types of weather maps, such as temperature maps, precipitation maps, and wind maps.
7. Weather alerts: This includes alerts for severe weather conditions such as hurricanes, tornadoes, and thunderstorms.
Overall, OpenWeather's API provides a comprehensive set of weather-related data that can be used for a wide range of applications, from weather forecasting to air quality monitoring.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.