Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Orb’s mission is to build the real-time billing infrastructure that underlies the world’s most versatile companies. The shift away from subscriptions into usage-based pricing models fundamentally changes the customer relationship and demands a more flexible and dynamic technology stack. Orb is developer-first and uniquely extensible at its core. We handle the data infrastructure and billing logic needed for usage-based billing, so you get to focus on the innovative aspects of your company’s monetization.
For huge analytical tables, Apache Iceberg is a high-performance format. Using Apache Iceberg, engines such as Spark, Trino, Flink, Presto, Hive and Impala can safely work with the same tables, at the same time, providing the reliability and simplicity of SQL tables to big data. With Apache Iceberg, you can merge new data, update existing rows, and delete specific rows. Data files can be eagerly rewritten or deleted deltas can be used to make updates faster.
Orb's API provides access to a wide range of data related to the music industry. The following are the categories of data that can be accessed through Orb's API:
1. Music metadata: This includes information about the artist, album, track, and genre.
2. Music streaming data: This includes data related to music streaming services such as Spotify, Apple Music, and Tidal.
3. Music sales data: This includes data related to music sales on platforms such as iTunes and Amazon.
4. Music charts data: This includes data related to music charts such as Billboard and iTunes charts.
5. Music licensing data: This includes data related to music licensing for use in films, TV shows, and commercials.
6. Music events data: This includes data related to music events such as concerts and festivals.
7. Music social media data: This includes data related to social media platforms such as Twitter, Facebook, and Instagram.
8. Music news data: This includes data related to music news and articles from various sources.
Overall, Orb's API provides a comprehensive set of data related to the music industry, which can be used by developers to build music-related applications and services.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.