How to load data from BigQuery to Google Sheets

Learn how to use Airbyte to synchronize your BigQuery data into Google Sheets within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a BigQuery connector in Airbyte

Connect to BigQuery or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Google Sheets for your extracted BigQuery data

Select Google Sheets where you want to import data from your BigQuery source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the BigQuery to Google Sheets in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Old Automated Content

TL;DR

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps:

  1. set up BigQuery as a source connector (using Auth, or usually an API key)
  2. set up Google Sheets as a destination connector
  3. define which data you want to transfer and how frequently

You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud.

This tutorial’s purpose is to show you how.

What is BigQuery

BigQuery is a cloud-based data warehousing and analytics platform that allows users to store, manage, and analyze large amounts of data in real-time. It is a fully managed service that eliminates the need for users to manage their own infrastructure, and it offers a range of features such as SQL querying, machine learning, and data visualization. BigQuery is designed to handle petabyte-scale datasets and can be used for a variety of use cases, including business intelligence, data exploration, and predictive analytics. It is a powerful tool for organizations looking to gain insights from their data and make data-driven decisions.

What is Google Sheets

Google Sheets is a cloud-based spreadsheet tool that allows users to create, edit, and share spreadsheets online. It is a part of the Google Drive suite of productivity tools and is accessible from any device with an internet connection. Google Sheets offers a range of features that make it a powerful tool for data analysis, project management, and collaboration. Users can create and format spreadsheets, add formulas and functions, and create charts and graphs to visualize data. Google Sheets also allows users to collaborate in real-time, making it easy to work on projects with others. Users can share spreadsheets with specific people or make them public, and can control who has access to edit or view the document. Additionally, Google Sheets integrates with other Google tools such as Google Forms, allowing users to collect data and automatically populate it into a spreadsheet. Overall, Google Sheets is a versatile and user-friendly tool that can be used for a variety of tasks, from simple calculations to complex data analysis.

Integrate BigQuery with Google Sheets in minutes

Try for free now

Prerequisites

  1. A BigQuery account to transfer your customer data automatically from.
  2. A Google Sheets account.
  3. An active Airbyte Cloud account, or you can also choose to use Airbyte Open Source locally. You can follow the instructions to set up Airbyte on your system using docker-compose.

Airbyte is an open-source data integration platform that consolidates and streamlines the process of extracting and loading data from multiple data sources to data warehouses. It offers pre-built connectors, including BigQuery and Google Sheets, for seamless data migration.

When using Airbyte to move data from BigQuery to Google Sheets, it extracts data from BigQuery using the source connector, converts it into a format Google Sheets can ingest using the provided schema, and then loads it into Google Sheets via the destination connector. This allows businesses to leverage their BigQuery data for advanced analytics and insights within Google Sheets, simplifying the ETL process and saving significant time and resources.

Step 1: Set up BigQuery as a source connector

1. First, you need to have a Google Cloud Platform account and a project with BigQuery enabled.

2. Go to the Google Cloud Console and create a new service account with the necessary permissions to access your BigQuery data.

3. Download the JSON key file for the service account and keep it safe.

4. Open Airbyte and go to the Sources page.

5. Click on the "Create a new source" button and select "BigQuery" from the list of available sources.

6. Enter a name for your source and click on "Next".

7. In the "Connection Configuration" section, enter the following information:  
- Project ID: the ID of your Google Cloud Platform project  
- JSON Key: copy and paste the contents of the JSON key file you downloaded earlier  
- Dataset: the name of the dataset you want to connect to

8. Click on "Test Connection" to make sure everything is working correctly.

9. If the test is successful, click on "Create Source" to save your configuration.

10. You can now use your BigQuery source connector to extract data from your dataset and load it into Airbyte for further processing.

Step 2: Set up Google Sheets as a destination connector

1. Go to the Airbyte website and log in to your account.
2. Click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the "Google Sheets" destination connector and click on it.
4. Click on the "Create Destination" button.
5. Enter a name for your destination and click on the "Create" button.
6. You will be redirected to the Google Sheets authorization page. Sign in to your Google account if you haven't already.
7. Click on the "Allow" button to grant Airbyte access to your Google Sheets account.
8. You will be redirected back to the Airbyte website. Select the Google Sheets destination you just created from the list of destinations.
9. Enter the name of the spreadsheet you want to use as your destination and select the worksheet you want to use.
10. Click on the "Test" button to make sure the connection is working properly.
11. If the test is successful, click on the "Save" button to save your destination settings.
12. You can now use the Google Sheets destination connector to transfer data from your source to your Google Sheets destination.

Step 3: Set up a connection to sync your BigQuery data to Google Sheets

Once you've successfully connected BigQuery as a data source and Google Sheets as a destination in Airbyte, you can set up a data pipeline between them with the following steps:

  1. Create a new connection: On the Airbyte dashboard, navigate to the 'Connections' tab and click the '+ New Connection' button.
  2. Choose your source: Select BigQuery from the dropdown list of your configured sources.
  3. Select your destination: Choose Google Sheets from the dropdown list of your configured destinations.
  4. Configure your sync: Define the frequency of your data syncs based on your business needs. Airbyte allows both manual and automatic scheduling for your data refreshes.
  5. Select the data to sync: Choose the specific BigQuery objects you want to import data from towards Google Sheets. You can sync all data or select specific tables and fields.
  6. Select the sync mode for your streams: Choose between full refreshes or incremental syncs (with deduplication if you want), and this for all streams or at the stream level. Incremental is only available for streams that have a primary cursor.
  7. Test your connection: Click the 'Test Connection' button to make sure that your setup works. If the connection test is successful, save your configuration.
  8. Start the sync: If the test passes, click 'Set Up Connection'. Airbyte will start moving data from BigQuery to Google Sheets according to your settings.

Remember, Airbyte keeps your data in sync at the frequency you determine, ensuring your Google Sheets data warehouse is always up-to-date with your BigQuery data.

Use Cases to transfer your BigQuery data to Google Sheets

Integrating data from BigQuery to Google Sheets provides several benefits. Here are a few use cases:

  1. Advanced Analytics: Google Sheets’s powerful data processing capabilities enable you to perform complex queries and data analysis on your BigQuery data, extracting insights that wouldn't be possible within BigQuery alone.
  2. Data Consolidation: If you're using multiple other sources along with BigQuery, syncing to Google Sheets allows you to centralize your data for a holistic view of your operations, and to set up a change data capture process so you never have any discrepancies in your data again.
  3. Historical Data Analysis: BigQuery has limits on historical data. Syncing data to Google Sheets allows for long-term data retention and analysis of historical trends over time.
  4. Data Security and Compliance: Google Sheets provides robust data security features. Syncing BigQuery data to Google Sheets ensures your data is secured and allows for advanced data governance and compliance management.
  5. Scalability: Google Sheets can handle large volumes of data without affecting performance, providing an ideal solution for growing businesses with expanding BigQuery data.
  6. Data Science and Machine Learning: By having BigQuery data in Google Sheets, you can apply machine learning models to your data for predictive analytics, customer segmentation, and more.
  7. Reporting and Visualization: While BigQuery provides reporting tools, data visualization tools like Tableau, PowerBI, Looker (Google Data Studio) can connect to Google Sheets, providing more advanced business intelligence options. If you have a BigQuery table that needs to be converted to a Google Sheets table, Airbyte can do that automatically.

Wrapping Up

To summarize, this tutorial has shown you how to:

  1. Configure a BigQuery account as an Airbyte data source connector.
  2. Configure Google Sheets as a data destination connector.
  3. Create an Airbyte data pipeline that will automatically be moving data directly from BigQuery to Google Sheets after you set a schedule

With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.

We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that supports both incremental and full refreshes, for databases of any size.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Jean-Mathieu Saponaro
Data & Analytics Senior Eng Manager

"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Alexis Weill
Data Lead

“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria.
The value of being able to scale and execute at a high level by maximizing resources is immense”

Learn more

Sync with Airbyte

1. First, you need to have a Google Cloud Platform account and a project with BigQuery enabled.

2. Go to the Google Cloud Console and create a new service account with the necessary permissions to access your BigQuery data.

3. Download the JSON key file for the service account and keep it safe.

4. Open Airbyte and go to the Sources page.

5. Click on the "Create a new source" button and select "BigQuery" from the list of available sources.

6. Enter a name for your source and click on "Next".

7. In the "Connection Configuration" section, enter the following information:  
- Project ID: the ID of your Google Cloud Platform project  
- JSON Key: copy and paste the contents of the JSON key file you downloaded earlier  
- Dataset: the name of the dataset you want to connect to

8. Click on "Test Connection" to make sure everything is working correctly.

9. If the test is successful, click on "Create Source" to save your configuration.

10. You can now use your BigQuery source connector to extract data from your dataset and load it into Airbyte for further processing.

1. Go to the Airbyte website and log in to your account.
2. Click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the "Google Sheets" destination connector and click on it.
4. Click on the "Create Destination" button.
5. Enter a name for your destination and click on the "Create" button.
6. You will be redirected to the Google Sheets authorization page. Sign in to your Google account if you haven't already.
7. Click on the "Allow" button to grant Airbyte access to your Google Sheets account.
8. You will be redirected back to the Airbyte website. Select the Google Sheets destination you just created from the list of destinations.
9. Enter the name of the spreadsheet you want to use as your destination and select the worksheet you want to use.
10. Click on the "Test" button to make sure the connection is working properly.
11. If the test is successful, click on the "Save" button to save your destination settings.
12. You can now use the Google Sheets destination connector to transfer data from your source to your Google Sheets destination.

Once you've successfully connected BigQuery as a data source and Google Sheets as a destination in Airbyte, you can set up a data pipeline between them with the following steps:

  1. Create a new connection: On the Airbyte dashboard, navigate to the 'Connections' tab and click the '+ New Connection' button.
  2. Choose your source: Select BigQuery from the dropdown list of your configured sources.
  3. Select your destination: Choose Google Sheets from the dropdown list of your configured destinations.
  4. Configure your sync: Define the frequency of your data syncs based on your business needs. Airbyte allows both manual and automatic scheduling for your data refreshes.
  5. Select the data to sync: Choose the specific BigQuery objects you want to import data from towards Google Sheets. You can sync all data or select specific tables and fields.
  6. Select the sync mode for your streams: Choose between full refreshes or incremental syncs (with deduplication if you want), and this for all streams or at the stream level. Incremental is only available for streams that have a primary cursor.
  7. Test your connection: Click the 'Test Connection' button to make sure that your setup works. If the connection test is successful, save your configuration.
  8. Start the sync: If the test passes, click 'Set Up Connection'. Airbyte will start moving data from BigQuery to Google Sheets according to your settings.

Remember, Airbyte keeps your data in sync at the frequency you determine, ensuring your Google Sheets data warehouse is always up-to-date with your BigQuery data.

How to Sync BigQuery to Google Sheets Manually

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

BigQuery is a cloud-based data warehousing and analytics platform that allows users to store, manage, and analyze large amounts of data in real-time. It is a fully managed service that eliminates the need for users to manage their own infrastructure, and it offers a range of features such as SQL querying, machine learning, and data visualization. BigQuery is designed to handle petabyte-scale datasets and can be used for a variety of use cases, including business intelligence, data exploration, and predictive analytics. It is a powerful tool for organizations looking to gain insights from their data and make data-driven decisions.

BigQuery provides access to a wide range of data types, including:

1. Structured data: This includes data that is organized into tables with defined columns and data types, such as CSV, JSON, and Avro files.
2. Semi-structured data: This includes data that has some structure, but not necessarily a fixed schema, such as XML and JSON files.
3. Unstructured data: This includes data that has no predefined structure, such as text, images, and videos.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and spatial databases.
6. Machine learning data: This includes data that is used to train machine learning models, such as labeled datasets and feature vectors.
7. Streaming data: This includes data that is generated in real-time, such as social media feeds, IoT sensor data, and log files.

Overall, BigQuery's API provides access to a wide range of data types, making it a powerful tool for data analysis and machine learning.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up BigQuery to Google Sheets as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from BigQuery to Google Sheets and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

Files
Warehouses and Lakes

How to load data from BigQuery to Google Sheets

Learn how to use Airbyte to synchronize your BigQuery data into Google Sheets within minutes.

TL;DR

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps:

  1. set up BigQuery as a source connector (using Auth, or usually an API key)
  2. set up Google Sheets as a destination connector
  3. define which data you want to transfer and how frequently

You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud.

This tutorial’s purpose is to show you how.

What is BigQuery

BigQuery is a cloud-based data warehousing and analytics platform that allows users to store, manage, and analyze large amounts of data in real-time. It is a fully managed service that eliminates the need for users to manage their own infrastructure, and it offers a range of features such as SQL querying, machine learning, and data visualization. BigQuery is designed to handle petabyte-scale datasets and can be used for a variety of use cases, including business intelligence, data exploration, and predictive analytics. It is a powerful tool for organizations looking to gain insights from their data and make data-driven decisions.

What is Google Sheets

Google Sheets is a cloud-based spreadsheet tool that allows users to create, edit, and share spreadsheets online. It is a part of the Google Drive suite of productivity tools and is accessible from any device with an internet connection. Google Sheets offers a range of features that make it a powerful tool for data analysis, project management, and collaboration. Users can create and format spreadsheets, add formulas and functions, and create charts and graphs to visualize data. Google Sheets also allows users to collaborate in real-time, making it easy to work on projects with others. Users can share spreadsheets with specific people or make them public, and can control who has access to edit or view the document. Additionally, Google Sheets integrates with other Google tools such as Google Forms, allowing users to collect data and automatically populate it into a spreadsheet. Overall, Google Sheets is a versatile and user-friendly tool that can be used for a variety of tasks, from simple calculations to complex data analysis.

Integrate BigQuery with Google Sheets in minutes

Try for free now

Prerequisites

  1. A BigQuery account to transfer your customer data automatically from.
  2. A Google Sheets account.
  3. An active Airbyte Cloud account, or you can also choose to use Airbyte Open Source locally. You can follow the instructions to set up Airbyte on your system using docker-compose.

Airbyte is an open-source data integration platform that consolidates and streamlines the process of extracting and loading data from multiple data sources to data warehouses. It offers pre-built connectors, including BigQuery and Google Sheets, for seamless data migration.

When using Airbyte to move data from BigQuery to Google Sheets, it extracts data from BigQuery using the source connector, converts it into a format Google Sheets can ingest using the provided schema, and then loads it into Google Sheets via the destination connector. This allows businesses to leverage their BigQuery data for advanced analytics and insights within Google Sheets, simplifying the ETL process and saving significant time and resources.

Step 1: Set up BigQuery as a source connector

1. First, you need to have a Google Cloud Platform account and a project with BigQuery enabled.

2. Go to the Google Cloud Console and create a new service account with the necessary permissions to access your BigQuery data.

3. Download the JSON key file for the service account and keep it safe.

4. Open Airbyte and go to the Sources page.

5. Click on the "Create a new source" button and select "BigQuery" from the list of available sources.

6. Enter a name for your source and click on "Next".

7. In the "Connection Configuration" section, enter the following information:  
- Project ID: the ID of your Google Cloud Platform project  
- JSON Key: copy and paste the contents of the JSON key file you downloaded earlier  
- Dataset: the name of the dataset you want to connect to

8. Click on "Test Connection" to make sure everything is working correctly.

9. If the test is successful, click on "Create Source" to save your configuration.

10. You can now use your BigQuery source connector to extract data from your dataset and load it into Airbyte for further processing.

Step 2: Set up Google Sheets as a destination connector

1. Go to the Airbyte website and log in to your account.
2. Click on the "Destinations" tab on the left-hand side of the screen.
3. Scroll down until you find the "Google Sheets" destination connector and click on it.
4. Click on the "Create Destination" button.
5. Enter a name for your destination and click on the "Create" button.
6. You will be redirected to the Google Sheets authorization page. Sign in to your Google account if you haven't already.
7. Click on the "Allow" button to grant Airbyte access to your Google Sheets account.
8. You will be redirected back to the Airbyte website. Select the Google Sheets destination you just created from the list of destinations.
9. Enter the name of the spreadsheet you want to use as your destination and select the worksheet you want to use.
10. Click on the "Test" button to make sure the connection is working properly.
11. If the test is successful, click on the "Save" button to save your destination settings.
12. You can now use the Google Sheets destination connector to transfer data from your source to your Google Sheets destination.

Step 3: Set up a connection to sync your BigQuery data to Google Sheets

Once you've successfully connected BigQuery as a data source and Google Sheets as a destination in Airbyte, you can set up a data pipeline between them with the following steps:

  1. Create a new connection: On the Airbyte dashboard, navigate to the 'Connections' tab and click the '+ New Connection' button.
  2. Choose your source: Select BigQuery from the dropdown list of your configured sources.
  3. Select your destination: Choose Google Sheets from the dropdown list of your configured destinations.
  4. Configure your sync: Define the frequency of your data syncs based on your business needs. Airbyte allows both manual and automatic scheduling for your data refreshes.
  5. Select the data to sync: Choose the specific BigQuery objects you want to import data from towards Google Sheets. You can sync all data or select specific tables and fields.
  6. Select the sync mode for your streams: Choose between full refreshes or incremental syncs (with deduplication if you want), and this for all streams or at the stream level. Incremental is only available for streams that have a primary cursor.
  7. Test your connection: Click the 'Test Connection' button to make sure that your setup works. If the connection test is successful, save your configuration.
  8. Start the sync: If the test passes, click 'Set Up Connection'. Airbyte will start moving data from BigQuery to Google Sheets according to your settings.

Remember, Airbyte keeps your data in sync at the frequency you determine, ensuring your Google Sheets data warehouse is always up-to-date with your BigQuery data.

Use Cases to transfer your BigQuery data to Google Sheets

Integrating data from BigQuery to Google Sheets provides several benefits. Here are a few use cases:

  1. Advanced Analytics: Google Sheets’s powerful data processing capabilities enable you to perform complex queries and data analysis on your BigQuery data, extracting insights that wouldn't be possible within BigQuery alone.
  2. Data Consolidation: If you're using multiple other sources along with BigQuery, syncing to Google Sheets allows you to centralize your data for a holistic view of your operations, and to set up a change data capture process so you never have any discrepancies in your data again.
  3. Historical Data Analysis: BigQuery has limits on historical data. Syncing data to Google Sheets allows for long-term data retention and analysis of historical trends over time.
  4. Data Security and Compliance: Google Sheets provides robust data security features. Syncing BigQuery data to Google Sheets ensures your data is secured and allows for advanced data governance and compliance management.
  5. Scalability: Google Sheets can handle large volumes of data without affecting performance, providing an ideal solution for growing businesses with expanding BigQuery data.
  6. Data Science and Machine Learning: By having BigQuery data in Google Sheets, you can apply machine learning models to your data for predictive analytics, customer segmentation, and more.
  7. Reporting and Visualization: While BigQuery provides reporting tools, data visualization tools like Tableau, PowerBI, Looker (Google Data Studio) can connect to Google Sheets, providing more advanced business intelligence options. If you have a BigQuery table that needs to be converted to a Google Sheets table, Airbyte can do that automatically.

Wrapping Up

To summarize, this tutorial has shown you how to:

  1. Configure a BigQuery account as an Airbyte data source connector.
  2. Configure Google Sheets as a data destination connector.
  3. Create an Airbyte data pipeline that will automatically be moving data directly from BigQuery to Google Sheets after you set a schedule

With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.

We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

Connectors Used

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

Connectors Used

Frequently Asked Questions

What data can you extract from BigQuery?

BigQuery provides access to a wide range of data types, including:

1. Structured data: This includes data that is organized into tables with defined columns and data types, such as CSV, JSON, and Avro files.
2. Semi-structured data: This includes data that has some structure, but not necessarily a fixed schema, such as XML and JSON files.
3. Unstructured data: This includes data that has no predefined structure, such as text, images, and videos.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and spatial databases.
6. Machine learning data: This includes data that is used to train machine learning models, such as labeled datasets and feature vectors.
7. Streaming data: This includes data that is generated in real-time, such as social media feeds, IoT sensor data, and log files.

Overall, BigQuery's API provides access to a wide range of data types, making it a powerful tool for data analysis and machine learning.

What data can you transfer to Google Sheets?

You can transfer a wide variety of data to Google Sheets. This usually includes structured, semi-structured, and unstructured data like transaction records, log files, JSON data, CSV files, and more, allowing robust, scalable data integration and analysis.

What are top ETL tools to transfer data from BigQuery to Google Sheets?

The most prominent ETL tools to transfer data from BigQuery to Google Sheets include:

  • Airbyte
  • Fivetran
  • Stitch
  • Matillion
  • Talend Data Integration

These tools help in extracting data from BigQuery and various sources (APIs, databases, and more), transforming it efficiently, and loading it into Google Sheets and other databases, data warehouses and data lakes, enhancing data management capabilities.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter

Connectors Used