

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by accessing the Braintree API. You'll need to authenticate using your API keys, which are available in your Braintree account under the API section. Use the Braintree SDK or direct HTTP requests to retrieve data, leveraging endpoints that provide transaction, customer, and other relevant data.
Once authenticated, extract the data you need. This can include transactions, customer details, and other financial data. Use the Braintree API to paginate through results if necessary, ensuring you capture all relevant data.
Prepare and transform the extracted data into a format compatible with AWS services, such as JSON or CSV. This step might include data cleaning and normalization processes to ensure consistency and readiness for loading into AWS.
Log in to your AWS Management Console and create an S3 bucket where the Braintree data will be stored. Set appropriate permissions for data storage, ensuring that the bucket is private and secure, yet accessible to necessary AWS services.
Use the AWS CLI or SDKs to upload the transformed data files to the S3 bucket. Make sure to follow best practices for data transfer, such as using multi-part upload for large files and verifying file integrity post-upload.
Set up AWS Glue to catalog the data stored in S3. Create a Glue Crawler that will automatically detect the schema of your data and populate the AWS Glue Data Catalog. This step prepares your data for querying using services like Amazon Athena.
With the data cataloged, use AWS services such as Amazon Athena for querying the data directly from S3, or set up AWS Redshift or EMR for more complex data processing and analytics. Ensure that your data lake architecture supports your analytical needs, providing insights and reporting capabilities.
By following these steps, you'll be able to efficiently move data from Braintree to an AWS Data Lake, enabling robust data analysis and storage capabilities without relying on third-party connectors.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Braintree is an online payment platform that enables payments for thousands of online businesses globally. Facilitating individual merchant accounts for commerce innovators such as Airbnb, Facebook, Uber, and GitHub, Braintree facilitates payments across 40+ countries and 130 currencies. Braintree powers PayPal, Venmo, Android Pay, Apple Pay, Bitcoin, and credit/debit cards across multiple devices, simplifying the payment process for merchants worldwide.
Braintree's API provides access to a wide range of data related to payment processing and transactions. The following are the categories of data that can be accessed through Braintree's API:
1. Payment data: This includes information related to payments made by customers, such as transaction amount, currency, payment method, and status.
2. Customer data: This includes information related to customers, such as name, email address, billing and shipping addresses, and payment methods.
3. Subscription data: This includes information related to recurring payments, such as subscription plans, billing cycles, and payment history.
4. Fraud data: This includes information related to fraud detection and prevention, such as risk scores, fraud rules, and suspicious activity alerts.
5. Dispute data: This includes information related to chargebacks and disputes, such as dispute status, reason codes, and dispute evidence.
6. Reporting data: This includes information related to transaction reporting and analysis, such as transaction volume, revenue, and refunds.
Overall, Braintree's API provides access to a comprehensive set of data that can help businesses manage their payment processing operations more effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: