

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, log into your Braze account and navigate to the data export section. Use Braze's Data Export API or the dashboard to manually export the data you require. You can export data like user profiles, events, or campaign details in a CSV or JSON format, depending on your needs.
Once you have exported the data, review the file to understand its structure and contents. Ensure that the data is clean, with no missing or corrupted entries. This step might include removing unnecessary columns or cleaning up the data to ensure consistency and accuracy.
Google Firestore is a NoSQL document database, so your data needs to be transformed into a suitable format. Convert your CSV or JSON data into a hierarchical JSON format that matches the Firestore document structure. This includes organizing data into collections and documents, and ensuring nested data is correctly formatted.
If you haven't already, set up a Google Cloud project. Go to the Google Cloud Console, create a new project, and enable Firestore. This will provide you access to Firestore and the necessary tools to upload your data.
To interact with Firestore programmatically, set up the Firebase Admin SDK in your preferred programming language (e.g., Node.js, Python, Java). Install the SDK and initialize it by providing the credentials from your Google Cloud project. This typically involves downloading a service account key from the Firebase Console and using it to authenticate.
Develop a script using the Firebase Admin SDK to read your transformed JSON data and upload it to Firestore. This script should iterate over your data, create or update documents as necessary, and handle any potential errors during the upload process. Ensure that your script maintains data integrity by correctly mapping fields from your JSON to the Firestore documents.
After the import process is complete, verify that all data has been correctly uploaded to Firestore. Check the Firestore Console to ensure that collections and documents are properly structured and that all expected data is present. Conduct sample queries to test data retrieval and confirm that the data behaves as expected within your application context.
By following these steps, you can effectively transfer data from Braze to Google Firestore without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Braze is a customer engagement platform that helps businesses build meaningful relationships with their customers. It offers a suite of tools for creating personalized and relevant messaging across multiple channels, including email, push notifications, in-app messaging, and more. With Braze, businesses can track customer behavior and preferences, segment their audience, and deliver targeted campaigns that drive engagement and revenue. The platform also includes advanced analytics and reporting capabilities, allowing businesses to measure the impact of their campaigns and optimize their strategies over time. Overall, Braze helps businesses create more effective and engaging customer experiences that drive loyalty and growth.
Braze's API provides access to a wide range of data related to customer engagement and marketing campaigns. The following are the categories of data that can be accessed through Braze's API:
1. User data: This includes information about individual users such as their name, email address, phone number, and location.
2. Campaign data: This includes data related to marketing campaigns such as email campaigns, push notifications, and in-app messages. It includes information about the campaign's performance, such as open rates, click-through rates, and conversion rates.
3. Event data: This includes data related to user actions such as app installs, purchases, and other interactions with the app or website.
4. Segmentation data: This includes data related to user segments, such as demographics, behavior, and interests.
5. Messaging data: This includes data related to messaging channels such as email, push notifications, and in-app messages. It includes information about message content, delivery, and engagement.
6. Analytics data: This includes data related to user behavior and engagement, such as session length, retention rates, and revenue generated.
Overall, Braze's API provides access to a wealth of data that can be used to optimize marketing campaigns and improve customer engagement.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: