

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing the Clockify API to extract the necessary data. Clockify provides a REST API that allows you to retrieve data such as time entries, projects, and users. Use a tool like `curl` or write a script in Python, JavaScript, or another programming language to make GET requests to the API endpoints. Ensure you have your API key for authentication.
Once you have the raw data from Clockify, parse it into a structured format. The API typically returns data in JSON format. Use a programming language to parse this JSON data into a format suitable for processing, such as a list of dictionaries in Python or an array of objects in JavaScript.
Prepare the data for insertion into Oracle Database by transforming it into a format that matches your Oracle database schema. This may involve cleaning the data, converting data types, and organizing it into tables and columns that correspond to your Oracle database design.
Establish a connection to your Oracle Database. Use Oracle's SQL*Plus, SQL Developer, or a programming language with Oracle Database support (such as Python with cx_Oracle or Java with JDBC). Ensure you have the correct connection details, including the database host, port, service name, username, and password.
Generate SQL INSERT statements or use prepared statements to insert the data into the Oracle Database. If you’re using a programming language, loop through the structured data and create an INSERT statement for each record. Ensure that the SQL statements match the schema of the target tables in your Oracle Database.
Execute the SQL INSERT statements to move the data into the Oracle Database. Use a transaction to ensure data integrity, especially if you are inserting a large amount of data. Commit the transaction once all data has been successfully inserted, or roll back if any errors occur during insertion.
After the data has been inserted, perform checks to ensure that the data in the Oracle Database matches what was extracted from Clockify. Run queries to compare counts, values, and data types. Make adjustments if discrepancies are found, and ensure all data has been accurately and completely transferred.
By following these steps, you can manually move data from Clockify to an Oracle Database while maintaining control over the entire process without relying on third-party tools.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Clockify is the most popular free time tracker and timesheet app for teams of all sizes. Unlike all the other time trackers, Clockify lets you have an unlimited number of users for free. Clockify is an online app that works in a browser, but you can also install it on your computer or phone. Clockify is largely used by everyone from freelancers, small businesses, and agencies, to government institutions, NGOs, universities, and Fortune 500 companies.
Clockify's API provides access to a wide range of data related to time tracking and project management. The following are the categories of data that can be accessed through Clockify's API:
1. Time entries: This includes data related to the time spent on tasks, projects, and clients.
2. Projects: This includes data related to the projects being worked on, such as project name, description, and status.
3. Clients: This includes data related to the clients associated with the projects, such as client name, contact information, and billing details.
4. Users: This includes data related to the users who are using Clockify, such as user name, email address, and role.
5. Workspaces: This includes data related to the workspaces created in Clockify, such as workspace name, description, and settings.
6. Reports: This includes data related to the reports generated in Clockify, such as time spent on projects, tasks, and clients.
Overall, Clockify's API provides access to a comprehensive set of data that can be used to track time, manage projects, and generate reports.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





