

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by exporting the data from Coda. Open the Coda document containing the data you wish to transfer. Use the built-in export feature to download the data in a CSV format. Go to the table menu, select "Export," and choose "CSV" as the file format. Save the CSV file to your local system.
Once you have the CSV file, open it using a spreadsheet application like Microsoft Excel or Google Sheets. Review the data to ensure it is correctly formatted and clean. Adjust any column headers or formats if necessary to align with the structure required by Convex.
Before importing data, ensure that your Convex database is set up correctly. Log into your Convex account and create a new database or collection if needed. Define the schema that matches the structure of your CSV data, including field types and constraints.
Write a custom script to automate the data import process. Use a scripting language like Python or JavaScript to parse the CSV file and insert records into your Convex database. The script should read the CSV file, map the data to the Convex schema, and handle any necessary data transformations.
Your script will need to authenticate and connect to the Convex API to perform data operations. Refer to the Convex API documentation to generate any necessary API keys and understand the endpoints for data insertion. Implement authentication in your script to securely connect to the database.
Run the script to start transferring data from the CSV file to Convex. Ensure your script includes error handling to address any issues that arise during the import process. Monitor the execution closely to verify that all data is imported correctly without any loss or corruption.
After the import process is complete, log into your Convex database to verify the integrity and accuracy of the data. Check that all records are present and correctly mapped according to the schema. Perform spot checks and run queries to validate that the data behaves as expected within Convex.
By following these steps, you can successfully move data from Coda to Convex without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Coda is a comprehensive solution that combines documents, spreadsheets, and building tools into a single platform. With this tool, project managers can track OKRs while also brainstorming with their teams.
Coda's API provides access to a wide range of data types, including:
1. Documents: Access to all the documents in a user's Coda account, including their metadata and content.
2. Tables: Access to the tables within a document, including their columns, rows, and cell values.
3. Rows: Access to individual rows within a table, including their cell values and metadata.
4. Columns: Access to individual columns within a table, including their cell values and metadata.
5. Formulas: Access to the formulas within a table, including their syntax and results.
6. Views: Access to the views within a table, including their filters, sorts, and groupings.
7. Users: Access to the users within a Coda account, including their metadata and permissions.
8. Groups: Access to the groups within a Coda account, including their metadata and membership.
9. Integrations: Access to the integrations within a Coda account, including their metadata and configuration.
10. Webhooks: Access to the webhooks within a Coda account, including their metadata and configuration.
Overall, Coda's API provides a comprehensive set of data types that developers can use to build powerful integrations and applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





