

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Gain access to your CommCare data by utilizing the CommCare Export Tool or directly accessing the CommCare API. You will need to authenticate using an API key or username and password to retrieve data in JSON or XML format. Ensure you have the necessary permissions to access the data you intend to migrate.
Log into your AWS Management Console and create an S3 bucket that will serve as your data lake. Configure the bucket by setting appropriate permissions and policies to ensure secure access. Make note of the bucket name and region, as you will need these for uploading the data.
Write a script in a language like Python to automate the retrieval of data from CommCare. Utilize libraries such as `requests` to make API calls and handle authentication. Ensure the script can handle pagination if your dataset is large and needs to be retrieved in chunks.
Since AWS services work seamlessly with structured data formats like CSV or Parquet, transform your JSON or XML data into one of these formats. Use Python libraries like `pandas` or `csv` to clean and structure the data appropriately, ensuring that it is well-organized and ready for analysis.
Use AWS SDK for Python (Boto3) to upload your transformed data files to the S3 bucket. Ensure that your AWS credentials are properly configured to allow this operation. The script should handle file uploads programmatically, ensuring all data files are securely stored in the S3 bucket.
Create and configure AWS IAM roles and policies to control access to your S3 bucket. Define roles for any AWS services or users that need to access the data lake. This step is crucial to maintain data security and integrity by ensuring that only authorized users and applications can access the data.
Conduct thorough checks to ensure that all data has been accurately transferred and is accessible. Use AWS CloudTrail for logging and monitoring access to your S3 bucket. Run sample queries using AWS Athena or set up AWS Glue to catalog and verify the data structure. This step ensures that the data lake is ready for analytics and business intelligence processes.
By following these steps, you can efficiently move data from CommCare to an AWS Data Lake without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Commcare is a mobile data collection and management platform designed for frontline workers in low-resource settings. It allows users to create custom mobile applications that can be used to collect data, track progress, and manage workflows. The platform is designed to be user-friendly and accessible, even for users with limited technical skills. Commcare is used by organizations in a variety of sectors, including healthcare, agriculture, and education, to improve data collection and management, increase efficiency, and improve outcomes. The platform is highly customizable, allowing users to tailor their applications to their specific needs and workflows.
Commcare's API provides access to a wide range of data related to mobile data collection and management. The following are the categories of data that can be accessed through Commcare's API:
1. Form Data: This includes data collected through mobile forms, such as survey responses, patient information, and other data points.
2. Case Data: This includes data related to cases created in Commcare, such as patient cases, project cases, and other case types.
3. User Data: This includes data related to users of the Commcare platform, such as user profiles, roles, and permissions.
4. Location Data: This includes data related to the location of mobile devices used for data collection, such as GPS coordinates and other location-based data.
5. Analytics Data: This includes data related to the performance of mobile data collection and management, such as usage statistics, form completion rates, and other metrics.
6. Media Data: This includes data related to media files uploaded through Commcare, such as images, videos, and audio recordings.
Overall, Commcare's API provides access to a wide range of data that can be used to improve mobile data collection and management processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: