Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from Dremio. You can do this by running a SQL query on the Dremio platform to extract the desired data. Once you have the query results, export them in a standard file format such as CSV or JSON, which is easily manageable and can be imported into other systems.
After exporting the data, ensure that the data files are properly formatted and cleaned. Check for any inconsistencies or errors in the data that might have occurred during the export process. Ensure that the data types and structures align with the requirements of Teradata Vantage for seamless import.
Before importing data, ensure that your Teradata environment is correctly set up. This includes having access to the Teradata Vantage system, ensuring permissions are in place for data import, and having the necessary schema or tables created where the data will be loaded.
Move the exported data files to a location accessible by Teradata. This could be a shared network location or a file system that Teradata can read. Ensure that the files are secure and that only authorized personnel have access.
Teradata provides several native tools for data loading, such as Teradata Parallel Transporter (TPT) and FastLoad. Select the appropriate tool based on your data size and load requirements. These tools are efficient for loading large volumes of data into Teradata tables.
Utilize the chosen Teradata tool to load the data into your Teradata Vantage environment. For example, using TPT, you can define a job script that specifies the data source, target table, and any necessary data transformations or mappings. Execute the script to perform the data load.
After the data load is complete, perform checks to verify the integrity and accuracy of the imported data. Run queries to compare the source data against the imported data in Teradata to ensure consistency. Address any discrepancies or issues promptly to maintain data quality.
By following these steps, you can effectively move data from Dremio to Teradata Vantage without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Dremio is a data-as-a-service platform that enables businesses to access and analyze their data faster and more efficiently. It provides a self-service data platform that connects to various data sources, including cloud storage, databases, and data lakes, and allows users to query and analyze data using familiar tools like SQL and BI tools. Dremio's unique approach to data processing, called Data Reflections, accelerates query performance by automatically creating optimized copies of data in memory. This allows users to get insights from their data in real-time, without the need for complex data pipelines or data warehousing. Dremio also provides enterprise-grade security and governance features to ensure data privacy and compliance.
Dremio's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as data from relational databases.
2. Semi-structured data: This includes data that has some structure, but is not organized into tables, such as JSON or XML data.
3. Unstructured data: This includes data that has no predefined structure, such as text documents, images, and videos.
4. Big data: This includes large volumes of data that cannot be processed using traditional data processing tools, such as Hadoop and Spark.
5. Streaming data: This includes real-time data that is generated continuously, such as data from IoT devices or social media feeds.
6. Cloud data: This includes data that is stored in cloud-based services, such as Amazon S3 or Microsoft Azure.
Overall, Dremio's API provides access to a wide range of data types, making it a powerful tool for data integration and analysis.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: