

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting your data from Drift. Access the Drift dashboard and navigate to the data export section. Choose the specific data you want to export, such as conversations, contacts, or leads. Export the data in a CSV or JSON format, which will be easy to manipulate and import into Typesense.
Once you have your exported data file, ensure it is well-structured and clean. Remove any unnecessary fields or data that you don’t need to be indexed in Typesense. Make sure the data is in a flat structure, as nested structures will need to be flattened for Typesense indexing.
Modify the data format to meet the requirements of Typesense. Create a script (in Python, JavaScript, or any language of your choice) to transform the CSV or JSON data into a JSON array of objects, where each object represents a document. Make sure each document has a unique ID and that the fields match the schema you plan to use in Typesense.
If you haven’t already set up a Typesense server, do so now. You can either run Typesense locally by downloading it from their official site or set it up on a cloud server. Make sure you have access to a Typesense API key which will be used to authenticate your data uploads.
Before importing data, define a schema for your Typesense collection. The schema defines how the data will be stored and indexed. Use the Typesense dashboard or API to create a new collection with fields that match the transformed data fields. Specify which fields are searchable, filterable, and sortable according to your needs.
Use the Typesense API to import your transformed data into the collection. Write a script that reads the transformed JSON data and uses the Typesense API to upload each document to the specified collection. Handle any errors in the import process by checking the API responses and logging issues for debugging.
After the import process is complete, verify that all data has been correctly transferred and indexed in Typesense. Use the Typesense search API to perform a few test searches and ensure that the data is searchable and correctly indexed. Check for any missing fields or discrepancies and re-import if necessary.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Advertised as the “First and only revenue acceleration platform,” Drift provides an array of conversational tools in one place. Live chat, email, video, virtual selling assistants, Drift intel and prospector, and more are all smoothly integrated for a seamless and frictionless communication experience. Putting the personal touch back in marketing, Drift’s Conversational Marketing and Conversational Sales helps companies personalize business/client encounters and grow revenue faster.
Drift's API provides access to a wide range of data related to customer interactions and conversations. The following are the categories of data that can be accessed through Drift's API:
1. Conversations: This includes data related to all conversations between customers and agents, including conversation history, transcripts, and metadata.
2. Contacts: This includes data related to customer profiles, such as contact information, company details, and activity history.
3. Events: This includes data related to customer behavior, such as page views, clicks, and other actions taken on the website.
4. Campaigns: This includes data related to marketing campaigns, such as email campaigns, chat campaigns, and other promotional activities.
5. Integrations: This includes data related to third-party integrations, such as CRM systems, marketing automation tools, and other business applications.
6. Analytics: This includes data related to performance metrics, such as conversion rates, engagement rates, and other key performance indicators.
Overall, Drift's API provides a comprehensive set of data that can be used to gain insights into customer behavior, improve customer engagement, and optimize business processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: