Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by obtaining access to the Facebook Marketing API. You need to create a Facebook App through the Facebook Developer portal. Once your app is created, generate an access token, ensuring it has the necessary permissions to read marketing data. Store this access token securely as it will be used for authentication.
Determine the specific data you need to move from Facebook. This might include ad performance metrics, audience insights, or campaign details. Construct your API queries based on Facebook’s Graph API documentation. Clearly define the fields you require and the endpoints you’ll be querying to retrieve this data.
Install Python on your local machine or server if it’s not already installed. Use a package manager like `pip` to install necessary libraries such as `requests` for making HTTP requests and `google-cloud-pubsub` for interacting with Google Pub/Sub. Configure a virtual environment to manage dependencies and ensure compatibility.
Using Python, write a script that connects to the Facebook Marketing API and extracts the required data. Utilize the `requests` library to make GET requests to the API endpoints you defined earlier. Parse the JSON responses and structure the data as needed for further processing. Ensure your script includes error handling to manage API request limits and potential data retrieval issues.
Create a Google Cloud Platform (GCP) account if you don’t have one. Set up a new project and enable billing. Navigate to the Pub/Sub section of the GCP console and create a new topic that will receive the data from Facebook. Ensure you have the necessary permissions to publish messages to this topic.
Download and set up the Google Cloud SDK and authenticate using your GCP credentials. Generate a service account key and use it to authenticate your Python script. This key will provide the necessary permissions to publish messages to your Pub/Sub topic. The `google-cloud-pubsub` library will be used to create a client that interfaces with Pub/Sub.
Incorporate the Pub/Sub client into your Python script. Convert the extracted Facebook data into the format required by Pub/Sub, typically a JSON string. Use the Pub/Sub client to publish this data to the topic you created. Implement logging and exception handling to track successful publishes and manage any errors that occur during the process.
By following these steps, you will effectively move data from Facebook Marketing to Google Pub/Sub without relying on any third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Facebook Marketing is an extension of Facebook’s online social networking service. Making strategic use of its gigantic user base, Facebook has partnered with AXA Group to leverage the power of people connections (over 1.32 billion active users monthly) for extraordinarily efficient digital marketing and commercial collaboration. Through Facebook’s huge user base, Facebook Marketing is able to reach unprecedented numbers of people with personalized sales and marketing advertisements, making it a huge addition to the world of marketing.
Facebook Marketing's API provides access to a wide range of data that can be used for advertising and marketing purposes. The types of data that can be accessed through the API include:
1. Ad performance data: This includes metrics such as impressions, clicks, conversions, and cost per action.
2. Audience data: This includes information about the demographics, interests, and behaviors of the people who engage with your ads.
3. Campaign data: This includes information about the campaigns you have run, such as budget, targeting, and ad creative.
4. Page data: This includes information about your Facebook Page, such as the number of likes, followers, and engagement metrics.
5. Insights data: This includes data about how people are interacting with your content on Facebook, such as reach, engagement, and video views.
6. Custom audience data: This includes information about the custom audiences you have created, such as their size and composition.
7. Ad account data: This includes information about your ad account, such as billing and payment information.
Overall, the Facebook Marketing API provides a wealth of data that can be used to optimize your advertising campaigns and improve your marketing efforts on the platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





